423 research outputs found
Hyperfine Populations Prior to Muon Capture
It is shown that the 1S level hyperfine populations prior to muon capture
will be statistical when either target or beam are unpolarised independent of
the atomic level at which the hyperfine interaction becomes appreciable. This
assertion holds in the absence of magnetic transitions during the cascade and
is true because of minimal polarisation after atomic capture and selective
feeding during the cascade.Comment: (revtex, 6 preprint pages, no figures
Three-Nucleon Electroweak Capture Reactions
Recent advances in the study of the p-d radiative and mu-3he weak capture
processes are presented and discussed. The three-nucleon bound and scattering
states are obtained using the correlated-hyperspherical-harmonics method, with
realistic Hamiltonians consisting of the Argonne v14 or Argonne v18 two-nucleon
and Tucson-Melbourne or Urbana IX three-nucleon interactions. The
electromagnetic and weak transition operators include one- and two-body
contributions. The theoretical accuracy achieved in these calculations allows
for interesting comparisons with experimental data.Comment: 12 pages, 4 figures, invited talk at the CFIF Fall Workshop: Nuclear
Dynamics, from Quarks to Nuclei, Lisbon, 31st of October - 1st of November
200
Nuclear muon capture by 3He: meson exchange currents for the triton channel
Exchange current corrections are calculated using currents found from the
hard-pion model and AV14+3BF wavefunctions. Results are given for the rate and
spin observables. Their sensitivity to g_P, the nucleon pseudoscalar form
factor, is reported.Comment: 35 pages, uuencoded gz-compressed tar file 42 Kbyte
Final state interaction effects in mu-capture induced two-body decay of 3He
The mu-capture process on 3He leading to a neutron, a deuteron and a
mu-neutrino in the final state is studied. Three-nucleon Faddeev wave functions
for the initial 3He bound and the final neutron-deuteron scattering states are
calculated using the BonnB and Paris nucleon-nucleon potentials. The nuclear
weak current operator is restricted to impulse approximation. Large effects on
the decay rates of the final state interaction are found. The comparison to
recent experimental data shows that the inclusion of final state interactions
drastically improves the description of the data.Comment: 14 pages, 6 eps figure
Muon capture by 3He nuclei followed by proton and deuteron production
The paper describes an experiment aimed at studying muon capture by
nuclei in pure and mixtures at various densities. Energy distributions of
protons and deuterons produced via and are measured for the
energy intervals MeV and MeV, respectively. Muon capture
rates, and are obtained using two different analysis methods. The
least--squares methods gives , . The Bayes theorem
gives ,
. The experimental
differential capture rates, and , are compared with theoretical
calculations performed using the plane--wave impulse approximation (PWIA) with
the realistic NN interaction Bonn B potential. Extrapolation to the full energy
range yields total proton and deuteron capture rates in good agreement with
former results.Comment: 17 pages, 13 figures, accepted for publication in PR
Quenching of Weak Interactions in Nucleon Matter
We have calculated the one-body Fermi and Gamow-Teller charge-current, and
vector and axial-vector neutral-current nuclear matrix elements in nucleon
matter at densities of 0.08, 0.16 and 0.24 fm and proton fractions
ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained
by operating on Fermi-gas states by a symmetrized product of pair correlation
operators determined from variational calculations with the Argonne v18 and
Urbana IX two- and three-nucleon interactions. The squares of the charge
current matrix elements are found to be quenched by 20 to 25 % by the
short-range correlations in nucleon matter. Most of the quenching is due to
spin-isospin correlations induced by the pion exchange interactions which
change the isospins and spins of the nucleons. A large part of it can be
related to the probability for a spin up proton quasi-particle to be a bare
spin up/down proton/neutron. We also calculate the matrix elements of the
nuclear Hamiltonian in the same correlated basis. These provide relatively mild
effective interactions which give the variational energies in the Hartree-Fock
approximation. The calculated two-nucleon effective interaction describes the
spin-isospin susceptibilities of nuclear and neutron matter fairly accurately.
However 3-body terms are necessary to reproduce the compressibility. All
presented results use the simple 2-body cluster approximation to calculate the
correlated basis matrix elements.Comment: submitted to PR
The Axial-Vector Current in Nuclear Many-Body Physics
Weak-interaction currents are studied in a recently proposed effective field
theory of the nuclear many-body problem. The Lorentz-invariant effective field
theory contains nucleons, pions, isoscalar scalar () and vector
() fields, and isovector vector () fields. The theory exhibits a
nonlinear realization of chiral symmetry and has three
desirable features: it uses the same degrees of freedom to describe the
axial-vector current and the strong-interaction dynamics, it satisfies the
symmetries of the underlying theory of quantum chromodynamics, and its
parameters can be calibrated using strong-interaction phenomena, like hadron
scattering or the empirical properties of finite nuclei. Moreover, it has
recently been verified that for normal nuclear systems, it is possible to
systematically expand the effective lagrangian in powers of the meson fields
(and their derivatives) and to reliably truncate the expansion after the first
few orders. Here it is shown that the expressions for the axial-vector current,
evaluated through the first few orders in the field expansion, satisfy both
PCAC and the Goldberger--Treiman relation, and it is verified that the
corresponding vector and axial-vector charges satisfy the familiar chiral
charge algebra. Explicit results are derived for the Lorentz-covariant,
axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange
currents can be deduced.Comment: 32 pages, REVTeX 4.0 with 12pt.rtx, aps.rtx, revsymb.sty,
revtex4.cls, plus 14 figures; two sentences added in Summary; two references
adde
Polarized photons in radiative muon capture
We discuss the measurement of polarized photons arising from radiative muon
capture. The spectrum of left circularly polarized photons or equivalently the
circular polarization of the photons emitted in radiative muon capture on
hydrogen is quite sensitive to the strength of the induced pseudoscalar
coupling constant . A measurement of either of these quantities, although
very difficult, might be sufficient to resolve the present puzzle resulting
from the disagreement between the theoretical prediction for and the
results of a recent experiment. This sensitivity results from the absence of
left-handed radiation from the muon line and from the fact that the leading
parts of the radiation from the hadronic lines, as determined from the chiral
power counting rules of heavy-baryon chiral perturbation theory, all contain
pion poles.Comment: 10 pages, 6 figure
Theoretical Study of the ^3He(mu^-,nu_mu)^3H Capture
The ^3He(mu^-,nu_mu)^3H weak capture is studied using
correlated-hyperspherical-harmonics wave functions, obtained from realistic
Hamiltonians consisting of the Argonne or Argonne
two-nucleon, and Tucson-Melbourne or Urbana-IX three-nucleon interactions. The
nuclear weak charge and current operators have vector and axial-vector
components that include one- and two-body contributions. The strength of the
leading two-body operator in the axial-vector current is adjusted to reproduce
the Gamow-Teller matrix element in tritium -decay. The calculated total
capture rate is in excellent agreement with the most recent experimental
determination sec, when the PCAC value is adopted for the
induced pseudo-scalar coupling constant . The predictions for the
capture rate and angular correlation parameters , , and
are found to be only very weakly dependent on the model input Hamiltonian. The
variation of these observables with and the theoretical uncertainties
deriving from the model-dependent procedure used to constrain the axial current
are investigated.Comment: 16 pages, 1 figure, submitted to PR
- …