1,861 research outputs found
Marvel analysis of the measured high-resolution rovibrational spectra of H2S
44325 measured and assigned transitions of HS, the parent
isotopologue of the hydrogen sulfide molecule, are collated from 33
publications into a single database and reviewed critically. Based on this
information, rotation-vibration energy levels are determined for the ground
electronic state using the Measured Active Rotational-Vibrational Energy Levels
(MARVEL) technique. The ortho and para principal components of the measured
spectroscopic network of HS are considered separately. The verified
set of 25293 ortho- and 18778 para- HS transitions determine 3969
ortho and 3467 para energy levels. The Marvel results are compared with
alternative data compilations, including a theoretical variational linelist.Comment: 39 pages, 3 figures, JQSRT, 201
Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals
We briefly summarize the reported anomalous effects in deuterated metals at
ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on
important experiments as well as the theoretical basis for the opposition to
interpreting them as cold fusion. Then we critically examine more than 25
theoretical models for CF, including unusual nuclear and exotic chemical
hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure
Economics of education research: a review and future prospects
In this paper we offer an appraisal of the economics of education research area, charting its history as a field and discussing the ways in which economists have contributed both to education research and to education policy-making. In particular, we highlight the theoretical and methodological contributions that economists have made to the field of education during the last 50 years. Despite the success of the economics of education as a field of inquiry, we argue that some of the contributions made by economists could be limited if the economics of education is seen as quite distinct from the other disciplines working in the field of education. In these areas of common interest, economists need to work side by side with the other major disciplines in the field of education if their contribution to the field is to be maximised, particularly in terms of applying improved methodology. We conclude that the study of education acquisition and its economic and social impact in the economics of education research area is very likely to remain a fertile research ground. Acknowledgement
Structural studies of (rac)-BIPHEN organomagnesiates and intermediates in the halogen-metal exchange of 2-Bromopyridine
Four lithium magnesiate complexes (2−5) containing the dianionic (rac)-BIPHEN ligand have been prepared and characterized using X-ray crystallography and NMR spectroscopy. (THF)3·Li2Mg{(rac)-BIPHEN}nBu2, 2, (THF)3·Li2Mg{(rac)-BIPHEN}(CH2SiMe3)2, 3, and (THF)2·Li2Mg{(rac)-BIPHEN}neoPe2, 4, have been prepared by complexation of the appropriate dialkylmagnesium compound with in situ prepared Li(rac)-BIPHEN in a mixture of hydrocarbon/THF. For all structures, the Mg centers are four-coordinate (and retain the alkyl groups); however, in 2 and 3 the two Li centers have different coordination spheres (one binding to one THF molecule, the other to two). The solid-state structures of 2 and 3 are essentially isostructural with that of 4 except that both Li atoms in this molecule have equivalent coordination spheres. The solution behaviors of these three molecules have been studied by 1H, 13C, and DOSY NMR spectroscopy. During the synthesis of 2, it was discovered that a (rac)-BIPHEN-rich (or n-butyl-free) lithium magnesiate, (THF)4Li2Mg{(rac)-BIPHEN}fo2, 2b, could be isolated. The lithium precursor to 2−5, (THF)4·Li4{(rac)-BIPHEN)}2, 1, has also been isolated. Within the molecular structure of this tetranuclear complex, there are three different Li coordination environments. Finally, 2 has already shown promise as a reagent in a halogen−metal exchange reaction with 2-bromopyridine. The structural chemistry at play in this reaction was probed by X-ray crystallography and NMR spectroscopy. The organometallic intermediate pyridyl-magnesiated 5, (THF)2·Li2Mg{(rac)-BIPHEN}(2-pyridyl)2, was isolated in high yield
Collective signalling drives rapid jumping between cell states
Development can proceed in "fits and starts", with rapid transitions between cell states involving concerted transcriptome-wide changes in gene expression. However, it is not clear how these transitions are regulated in complex cell populations, in which cells receive multiple inputs. We address this issue using Dictyostelium cells undergoing development in their physiological niche. A continuous single cell transcriptomics time series identifies a sharp "jump" in global gene expression marking functionally different cell states. By simultaneously imaging the physiological dynamics of transcription and signalling, we show the jump coincides with the onset of collective oscillations of cAMP. Optogenetic control of cAMP pulses shows that different jump genes respond to distinct dynamic features of signalling. Late jump gene expression changes are almost completely dependent on cAMP, while transcript changes at the onset of the jump require additional input. The coupling of collective signalling with gene expression is a potentially powerful strategy to drive robust cell state transitions in heterogeneous signalling environments. Based on the context of the jump, we also conclude that sharp gene expression transitions may not be sufficient for commitment
Controlling periodic long-range signalling to drive a morphogenetic transition
Cells use signal relay to transmit information across tissue scales. However, the production of information carried by signal relay remains poorly characterised. To determine how the coding features of signal relay are generated, we used the classic system for long-range signalling: the periodic cAMP waves that drive Dictyostelium collective migration. Combining imaging and optogenetic perturbation of cell signalling states, we find that migration is triggered by an increase in wave frequency generated at the signalling centre. Wave frequency is regulated by cAMP wave circulation, which organises the long-range signal. To determine the mechanisms modulating wave circulation, we combined mathematical modelling, the general theory of excitable media and mechanical perturbations to test competing models. Models in which cell density and spatial patterning modulate the wave frequency cannot explain the temporal evolution of signalling waves. Instead, our evidence leads to a model where wave circulation increases the ability for cells to relay the signal, causing further increase in the circulation rate. This positive feedback between cell state and signalling pattern regulates the long-range signal coding that drives morphogenesis
- …
