1,486 research outputs found
Toeplitz Operators on Weighted Bergman Spaces
In this article we characterize the boundedness and compactness of a
Toeplitz-type operator on weighted Bergman spaces satisfying the so-called
Bekolle-Bonami condition in terms of the Berezin transform
Reshaping-induced spatiotemporal chaos in driven, damped sine-Gordon systems
Spatiotemporal chaos arising from the competition between
sine-Gordon-breather and kink-antikink-pair solitons by reshaping an ac force
is demonstrated. After introducing soliton collective coordinates, Melnikov's
method is applied to the resulting effective equation of motion to estimate the
parameter-space regions of the ac force where homoclinic bifurcations are
induced. The analysis reveals that the chaos-order threshold exhibits
sensitivity to small changes in the force shape. Computer simulations of the
sine-Gordon system show good agreement with these theoretical predictions.Comment: 11 pages, 3 figure
Towards AC-induced optimum control of dynamical localization
It is shown that optimum control of dynamical localization (quantum
suppression of classical diffusion) in the context of ultracold atoms in
periodically shaken optical lattices subjected to time-periodic forces having
equidistant zeros depends on the \textit{impulse} transmitted by the external
force over half-period rather than on the force amplitude. This result provides
a useful principle for optimally controlling dynamical localization in general
periodic systems, which is capable of experimental realization.Comment: 7 pages, 6 figure
Variable exponent Fock spaces
summary:We introduce variable exponent Fock spaces and study some of their basic properties such as boundedness of evaluation functionals, density of polynomials, boundedness of a Bergman-type projection and duality. We also prove that under the global log-Hölder condition, the variable exponent Fock spaces coincide with the classical ones
Homoclinic Signatures of Dynamical Localization
It is demonstrated that the oscillations in the width of the momentum
distribution of atoms moving in a phase-modulated standing light field, as a
function of the modulation amplitude, are correlated with the variation of the
chaotic layer width in energy of an underlying effective pendulum. The maximum
effect of dynamical localization and the nearly perfect delocalization are
associated with the maxima and minima, respectively, of the chaotic layer
width. It is also demonstrated that kinetic energy is conserved as an almost
adiabatic invariant at the minima of the chaotic layer width, and that the
system is accurately described by delta-kicked rotors at the zeros of the
Bessel functions J_0 and J_1. Numerical calculations of kinetic energy and
Lyapunov exponents confirm all the theoretical predictions.Comment: 7 pages, 4 figures, enlarged versio
Impulse-induced localized nonlinear modes in an electrical lattice
Intrinsic localized modes, also called discrete breathers, can exist under
certain conditions in one-dimensional nonlinear electrical lattices driven by
external harmonic excitations. In this work, we have studied experimentally the
efectiveness of generic periodic excitations of variable waveform at generating
discrete breathers in such lattices. We have found that this generation
phenomenon is optimally controlled by the impulse transmitted by the external
excitation (time integral over two consecutive zerosComment: 5 pages, 8 figure
Impulse-induced optimum signal amplification in scale-free networks
Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal''s impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism
Directed ratchet transport of cold atoms and fluxons driven by biharmonic fields: A unified view
This paper discusses two retrodictions of the theory of ratchet universality which explain previous experimental results concerning directed ratchet transport of cold atoms in dissipative optical lattices in one case and of fluxons in uniform annular Josephson junctions in the other, both driven by biharmonic fields. It has to be emphasized that these retrodictions are in sharp contrast with the current standard explanation of such experimental results, and they offer optimal control of the ratchetlike motion of such entities. New experimental proposals with cold atoms and fluxons are discussed, providing additional tests for novel predictions from ratchet universality. ©2021 American Physical Societ
Semi-Supervised Deep Learning for Fully Convolutional Networks
Deep learning usually requires large amounts of labeled training data, but
annotating data is costly and tedious. The framework of semi-supervised
learning provides the means to use both labeled data and arbitrary amounts of
unlabeled data for training. Recently, semi-supervised deep learning has been
intensively studied for standard CNN architectures. However, Fully
Convolutional Networks (FCNs) set the state-of-the-art for many image
segmentation tasks. To the best of our knowledge, there is no existing
semi-supervised learning method for such FCNs yet. We lift the concept of
auxiliary manifold embedding for semi-supervised learning to FCNs with the help
of Random Feature Embedding. In our experiments on the challenging task of MS
Lesion Segmentation, we leverage the proposed framework for the purpose of
domain adaptation and report substantial improvements over the baseline model.Comment: 9 pages, 6 figure
TWEAK: A New Player in Obesity and Diabetes
Obesity and type 2 diabetes (T2D) are associated with chronic low-grade inflammation. Mounting evidence suggests the involvement of an inflammatory switch in adipose tissue, both in mature adipocytes and immune-competent cells from the stromal vascular compartment, in the progression of obesity and insulin resistance. Several inflammatory cytokines secreted by obese adipose tissue, including TNFα and IL-6 have been described as hallmark molecules involved in this process, impairing insulin signalling in insulin-responsive organs. An increasing number of new molecules affecting the local and systemic inflammatory imbalance in obesity and T2D have been identified. In this complex condition, some molecules may exhibit opposing actions, depending on the cell type and on systemic or local influences. TWEAK, a cytokine of the tumor necrosis (TNF) superfamily, is gaining attention as an important player in chronic inflammatory diseases. TWEAK can exist as a full-length membrane-associated (mTWEAK) form and as a soluble (sTWEAK) form and, by acting through its cognate receptor Fn14, can control many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis and inflammation. Notably, sTWEAK has been proposed as a biomarker of cardiovascular diseases. Here, we will review the recent findings relating to TWEAK and its receptor within the context of obesity and the associated disorder T2D. <br/
- …