100 research outputs found
Adaptive meshless refinement schemes for RBF-PUM collocation
In this paper we present an adaptive discretization technique for solving
elliptic partial differential equations via a collocation radial basis function
partition of unity method. In particular, we propose a new adaptive scheme
based on the construction of an error indicator and a refinement algorithm,
which used together turn out to be ad-hoc strategies within this framework. The
performance of the adaptive meshless refinement scheme is assessed by numerical
tests
A RBF partition of unity collocation method based on finite difference for initial-boundary value problems
Meshfree radial basis function (RBF) methods are popular tools used to
numerically solve partial differential equations (PDEs). They take advantage of
being flexible with respect to geometry, easy to implement in higher
dimensions, and can also provide high order convergence. Since one of the main
disadvantages of global RBF-based methods is generally the computational cost
associated with the solution of large linear systems, in this paper we focus on
a localizing RBF partition of unity method (RBF-PUM) based on a finite
difference (FD) scheme. Specifically, we propose a new RBF-PUM-FD collocation
method, which can successfully be applied to solve time-dependent PDEs. This
approach allows to significantly decrease ill-conditioning of traditional
RBF-based methods. Moreover, the RBF-PUM-FD scheme results in a sparse matrix
system, reducing the computational effort but maintaining at the same time a
high level of accuracy. Numerical experiments show performances of our
collocation scheme on two benchmark problems, involving unsteady
convection-diffusion and pseudo-parabolic equations
Efficient computation of partition of unity interpolants through a block-based searching technique
In this paper we propose a new efficient interpolation tool, extremely
suitable for large scattered data sets. The partition of unity method is used
and performed by blending Radial Basis Functions (RBFs) as local approximants
and using locally supported weight functions. In particular we present a new
space-partitioning data structure based on a partition of the underlying
generic domain in blocks. This approach allows us to examine only a reduced
number of blocks in the search process of the nearest neighbour points, leading
to an optimized searching routine. Complexity analysis and numerical
experiments in two- and three-dimensional interpolation support our findings.
Some applications to geometric modelling are also considered. Moreover, the
associated software package written in \textsc{Matlab} is here discussed and
made available to the scientific community
Partition of unity interpolation using stable kernel-based techniques
In this paper we propose a new stable and accurate approximation technique
which is extremely effective for interpolating large scattered data sets. The
Partition of Unity (PU) method is performed considering Radial Basis Functions
(RBFs) as local approximants and using locally supported weights. In
particular, the approach consists in computing, for each PU subdomain, a stable
basis. Such technique, taking advantage of the local scheme, leads to a
significant benefit in terms of stability, especially for flat kernels.
Furthermore, an optimized searching procedure is applied to build the local
stable bases, thus rendering the method more efficient
RBF approximation of large datasets by partition of unity and local stabilization
We present an algorithm to approximate large dataset by Radial Basis Function
(RBF) techniques. The method couples a fast domain decomposition procedure with a
localized stabilization method. The resulting algorithm can efficiently deal with large
problems and it is robust with respect to the typical instability of kernel methods
- …