6 research outputs found

    Laser Induced Breakdown Spectroscopy for Quantification of Sodium and Potassium in Minced Beef: a Potential Technique for Detecting Beef Kidney Adulteration

    Get PDF
    Beef is a rich source of important minerals, with potassium (K) being the most abundant mineral quantitatively except in cured meats where sodium (Na) from the added salt predominates. This study evaluates the capability of LIBS for quantification of the Na and K contents of minced beef as a potential method of detecting beef kidney adulteration. Additionally, the study aims to demonstrate the ability of LIBS to provide spatial mineral information of minced beef. A LIBS system was employed to collect spectral information of adulterated minced beef samples. Atomic absorption spectroscopy (AAS) was used to obtain reference values for Na and K. The chemometric technique of partial least squares regression (PLSR) was used to build the prediction models. Spatial mineral maps of minced beef samples were generated based on the predicted percentages of Na and K. The models for Na and K yielded calibration coefficients of determination (Rc2) of 0.97 and 0.91 respectively. Similarly, a good calibration model was obtained for adulteration yielding a Rc2 of 0.97. Good prediction accuracy was observed for all models. Spatial mapping provided two major advantages: (a) representative measurements of samples and (b) spatial distribution of multi-elements. The results observed illustrate the ability of LIBS combined with chemometrics as a potential monitoring tool for mineral quantification as well as adulteration detection for the meat processing industry

    Challenges in Model Development for Meat Composition Using Multipoint NIR Spectroscopy from At‐Line to In‐Line Monitoring

    Get PDF
    This study evaluates the efficiency of multipoint near‐infrared spectroscopy (NIRS) to predict the fat and moisture content of minced beef samples both in at‐line and on‐line modes. Additionally, it aims at identifying the obstacles that can be encountered in the path of performing in‐line monitoring. Near‐infrared (NIR) reflectance spectra of minced beef samples were collected using an NIR spectrophotometer, employing a Fabry‐Perot interferometer. Partial least squares regression (PLSR) models based on reference values from proximate analysis yielded calibration coefficients of determination of 0.96 for both fat and moisture. For an independent batch of samples, fat was estimated with a prediction coefficient of determination of 0.87 and 0.82 for the samples in at‐line and on‐line modes, respectively. All the models were found to have good prediction accuracy; however, a higher bias was observed for predictions under on‐line mode. Overall results from this study illustrate that multipoint NIR systems combined with multivariate analysis has potential as a process analytical technology (PAT) tool for monitoring process parameters such as fat and moisture in the meat industry, providing real‐time spectral and spatial information. Citing Literatur

    Canonical discriminant analysis of the fatty acid profile of muscle to authenticate beef from grass-fed and other beef production systems: Model development and validation

    Get PDF
    peer-reviewedThe potential of diet-induced differences in the fatty acid profile of muscle to discriminate beef from different feeding systems and its potential use as an authentication tool was investigated. Three canonical discriminant models were built and validated using the fatty acid profile of beef from animals fed solely on pasture or cereal-based concentrates for 11 months or on various pasture/grass silage/concentrate combinations, including concentrates enriched with plant oils. Results indicated that models could successfully discriminate between grass-, partially grass- and concentrate-fed beef (accuracy = 99%) and between grass-fed beef and beef from animals supplemented with plant oils (accuracy = 96%). The approach also showed potential for distinguishing between beef from exclusively pasture-fed cattle and beef from cattle fed on pasture preceded by a period on ensiled grass (accuracy = 89%). Models were also applied to beef samples from 9 different countries. Of 97 international samples, including samples stated to be grass-fed, only 5% were incorrectly classified as Irish-grass-fed beef. These results suggested that the models captured traits in the fatty acid profile that are characteristic of Irish grass-fed beef and that this feature could be used for distinguishing Irish grass-fed beef from beef from other regions
    corecore