22 research outputs found

    The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discordance between steady-state levels of mRNAs and protein has been attributed to posttranscriptional control mechanisms affecting mRNA stability and translation. Traditional methods of genome wide microarray analysis, profiling steady-state levels of mRNA, may miss important mRNA targets owing to significant posttranscriptional gene regulation by RNA binding proteins (RBPs).</p> <p>Methods</p> <p>The ribonomic approach, utilizing RNA immunoprecipitation hybridized to microarray (RIP-Chip), provides global identification of putative endogenous mRNA targets of different RBPs. HuR is an RBP that binds to the AU-rich elements (ARE) of labile mRNAs, such as proto-oncogenes, facilitating their translation into protein. HuR has been shown to play a role in cancer progression and elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR has been described to control genes in several of the acquired capabilities of cancer and has been hypothesized to be a tumor-maintenance gene, allowing for cancers to proliferate once they are established.</p> <p>Results</p> <p>We used HuR RIP-Chip as a comprehensive and systematic method to survey breast cancer target genes in both MCF-7 (estrogen receptor positive, ER+) and MDA-MB-231 (estrogen receptor negative, ER-) breast cancer cell lines. We identified unique subsets of HuR-associated mRNAs found individually or in both cell types. Two novel HuR targets, <it>CD9 </it>and <it>CALM2 </it>mRNAs, were identified and validated by quantitative RT-PCR and biotin pull-down analysis.</p> <p>Conclusion</p> <p>This is the first report of a side-by-side genome-wide comparison of HuR-associated targets in wild type ER+ and ER- breast cancer. We found distinct, differentially expressed subsets of cancer related genes in ER+ and ER- breast cancer cell lines, and noted that the differential regulation of two cancer-related genes by HuR was contingent upon the cellular environment.</p

    Overexpression of the RNA binding protein HuR impairs tumor growth in triple negative breast cancer associated with deficient angiogenesis

    No full text
    Interactions between RNA binding proteins (RBPs) and genes are not well understood, especially in regulation of angiogenesis. The RBP HuR binds to the AU-rich (ARE) regions of labile mRNAs, facilitating their translation into protein and has been hypothesized to be a tumor-maintenance gene. Elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR controls the expression of multiple genes involved in angiogenesis including VEGFα, HIF1α and thrombospondin 1 (TSP1). We investigated the role of HuR in estrogen receptor negative (ER−) breast cancer. MDA-MB-231 cells with higher levels of HuR have alterations in cell cycle kinetics and faster growth. Unexpectedly, HuR overexpression significantly interfered with tumor growth in orthotopic mouse models. The putative mechanism seems to be an anti-angiogenetic effect by increasing expression of TSP1 but also surprisingly, downregulating VEGF, a target which HuR normally increases. Our findings reveal that HuR may be regulating a cluster of genes involved in blood vessel formation which controls tumor angiogenesis. An approach of modulating HuR levels may overcome limitations associated with monotherapies targeting tumor vessel formation
    corecore