1,442 research outputs found
Tagging single muons and other long-flying relativistic charged particles by ultra-fast timing in air Cherenkov telescopes
Atmospheric air Cherenkov telescopes are successfully used for ground-based,
very high-energy (VHE) gamma ray astronomy. Triggers from the so-called single
muon and other long-flying relativistic charged particle events are an unwanted
background for the Cherenkov telescope. Because of low rate at TeV energies the
muon background is unimportant. It is much more intense for telescopes with
high photon sensitivity and low energy threshold. Below a few hundred GeV
energy, the so-called muon background becomes so intense, that it can
deteriorate the sensitivity of telescopes (the so-called muon-wall problem).
From general considerations it can be anticipated that the signature of these
particles should be a light pulse with a narrow time structure. In fact,
simulations show that the pulses from muons have a very narrow time profile
that is well below the time resolutions of nearly all currently operating
telescopes. In this report we elaborate on the time profile of Cherenkov light
from the so-called single muons and show that a telescope with ultra-fast time
response can open a new dimension allowing one to tag and to reject those
events.Comment: Accepted by Astroparticle Physic
Surface States in Template Synthesized Tin Oxide Nanoparticles
Tinâoxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800 °C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio decrease
Distributions of Nobel Metal Pd and Pt in Mesoporous Silica
Mesoporous silicananostructures have been synthesized and loaded with Pd and Pt catalytic noble metals. It is found that Pd forms small nanoclusters (3â5 nm) on the surface of the mesoporous structure whereas Pt impregnation results in the inclusion of Pt nanostructures within the silica hexagonal pores (from nanoclusters to nanowires). It is observed that these materials have high catalyticproperties for COâCH4COâCH4COâCH4 combustion, even in a thick film form. In particular, results indicate that the Pt and Pd dispersed in mesoporous silica are catalytically active as a selective filter for gas sensors
Intermittent decoherence blockade in a chiral ring environment
It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-exponential staircase decay. This effect, that we refer to as intermittent decoherence blockade, arises from periodic destructive interference between light emitted in the present and light emitted in the past, i.e., from delayed coherent quantum feedback
Distributions of Noble Metal Pd and Pt in Mesoporous Silica
Mesoporous silica nanostructures have been synthesized and loaded with Pd and Pt catalytic noble metals. It is found that Pd forms small nanoclusters (3â5 nm) on the surface of the mesoporous structure whereas Pt impregnation results in the inclusion of Pt nanostructures within the silica hexagonal pores (from nanoclusters to nanowires). It is observed that these materials have high catalytic properties for COâCH4 combustion, even in a thick film form. In particular, results indicate that the Pt and Pd dispersed in mesoporous silica are catalytically active as a selective filter for gas sensors
Geosynchronous inclined orbits for high-latitude communications
We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55âŠN), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a highprecision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed
Vorticity Budget of Weak Thermal Convection in Keplerian disks
By employing the equations of mean-square vorticity (enstrophy) fluctuations
in strong shear flows, we demonstrate that unlike energy production of
turbulent vorticity in nonrotating shear flows, the turbulent vorticity of weak
convection in Keplerian disks cannot gain energy from vortex stretching/tilting
by background shear unless the asscoiated Reynolds stresses are negative. This
is because the epicyclic motion is an energy sink of the radial component of
mean-square turbulent vorticity in Keplerian disks when Reynolds stresses are
positive. Consequently, weak convection cannot be self-sustained in Keplerian
flows. This agrees with the results implied from the equations of mean-square
velocity fluctuations in strong shear flows. Our analysis also sheds light on
the explanation of the simulation result in which positive kinetic helicity is
produced by the Balbus-Hawley instability in a vertically stratified Keplerian
disk. We also comment on the possibility of outward angular momentum transport
by strong convection based on azimuthal pressure perturbations and directions
of energy cascade.Comment: 8 pages, 1 figure, emulateapj.sty, revised version in response to
referee's comments, accepted by Ap
Synthesis of Tin Oxide Nanostructures with Controlled Particle Size Using Mesoporous Frameworks
Tin oxide nanostructures with controlled narrow particle size distribution were synthesized inside silica mesoporous templates. In this way, particle growth was blocked by physically corseting the tin compound inside the silica frameworks, the pore diameter of which determines the final tin oxide crystallite size distribution. Template structures were subsequently eliminated by chemical methods to collect the unsupported semiconductor nanoparticles. Thus obtained tin oxed nanopowders, with particle sizes in the range between 6 and 10 nm, were structurally, chemically, and electically characterized. The results are compared with those obtained from the characterization of larger crystallite materials
The Ό opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway
BACKGROUND: The vanilloid receptor 1 (TRPV1) is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA) pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. RESULTS: In the present studies we investigated the hypothesis that the Ό opioid receptor (MOP) agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca(2+)) responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca(2+ )responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca(2+ )responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. CONCLUSION: The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation
- âŠ