40,462 research outputs found

    Dressing a Naked Singularity: an Example

    Full text link
    Considering the evolution of a perfect fluid with self-similarity of the second kind, we have found that an initial naked singularity can be trapped by an event horizon due to collapsing matter. The fluid moves along time-like geodesics with a self-similar parameter α=−3\alpha = -3. Since the metric obtained is not asymptotically flat, we match the spacetime of the fluid with a Schwarzschild spacetime. All the energy conditions are fulfilled until the naked singularity.Comment: 14 pages, 1 figure. This version corrects an error in the calculus of the pressure and in the conclusion

    Gravastars and Black Holes of Anisotropic Dark Energy

    Full text link
    Dynamical models of prototype gravastars made of anisotropic dark energy are constructed, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p=(1−γ)σp = (1-\gamma)\sigma divides the whole spacetime into two regions, the internal region filled with a dark energy fluid, and the external Schwarzschild region. The models represent "bounded excursion" stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes. Here we show, for the first time in the literature, a model of gravastar and formation of black hole with both interior and thin shell constituted exclusively of dark energy. Besides, the sign of the parameter of anisotropy (pt−prp_t - p_r) seems to be relevant to the gravastar formation. The formation is favored when the tangential pressure is greater than the radial pressure, at least in the neighborhood of the isotropic case (ω=−1\omega=-1).Comment: 16 pages, 8 figures. Accepted for publication in Gen. Rel. Gra

    Exact Black Hole and Cosmological Solutions in a Two-Dimensional Dilaton-Spectator Theory of Gravity

    Get PDF
    Exact black hole and cosmological solutions are obtained for a special two-dimensional dilaton-spectator (ϕ−ψ\phi-\psi) theory of gravity. We show how in this context any desired spacetime behaviour can be determined by an appropriate choice of a dilaton potential function V(ϕ)V(\phi) and a ``coupling function'' l(ϕ)l(\phi) in the action. We illustrate several black hole solutions as examples. In particular, asymptotically flat double- and multiple- horizon black hole solutions are obtained. One solution bears an interesting resemblance to the 2D2D string-theoretic black hole and contains the same thermodynamic properties; another resembles the 4D4D Reissner-Nordstrom solution. We find two characteristic features of all the black hole solutions. First the coupling constants in l(ϕ)l(\phi) must be set equal to constants of integration (typically the mass). Second, the spectator field ψ\psi and its derivative ψ′\psi^{'} both diverge at any event horizon. A test particle with ``spectator charge" ({\it i.e.} one coupled either to ψ\psi or ψ′\psi^{'}), will therefore encounter an infinite tidal force at the horizon or an ``infinite potential barrier'' located outside the horizon respectively. We also compute the Hawking temperature and entropy for our solutions. In 2D2D FRWFRW cosmology, two non-singular solutions which resemble two exact solutions in 4D4D string-motivated cosmology are obtained. In addition, we construct a singular model which describes the 4D4D standard non-inflationary big bang cosmology (big−bang→radiation→dustbig-bang\rightarrow radiation\rightarrow dust). Motivated by the similaritiesbetween 2D2D and 4D4D gravitational field equations in FRWFRW cosmology, we briefly discuss a special 4D4D dilaton-spectator action constructed from the bosonic part of the low energy heterotic string action andComment: 34 pgs. Plain Tex, revised version contains some clarifying comments concerning the relationship between the constants of integration and the coupling constants

    Gravitation and Cosmology in Generalized (1+1)-dimensional dilaton gravity

    Get PDF
    The actions of the ``R=TR=T'' and string-inspired theories of gravity in (1+1) dimensions are generalized into one single action which is characterized by two functions. We discuss differing interpretations of the matter stress-energy tensor, and show how two such different interpretations can yield two different sets of field equations from this action. The weak-field approximation, post-Newtonian expansion, hydrostatic equilibrium state of star and two-dimensional cosmology are studied separately by using the two sets of field equations. Some properties in the ``R=TR=T'' and string-inspired theories are shown to be generic in the theory induced by the generalized action.Comment: 34 page

    Scalar Wave Falloff in Asymptotically Anti-de Sitter Backgrounds

    Get PDF
    Conformally invariant scalar waves in black hole spacetimes which are asymptotically anti-de Sitter are investigated. We consider both the (2+1)(2+1)-dimensional black hole and (3+1)(3+1)-dimensional Schwarzschild-anti-de Sitter spacetime as backgrounds. Analytical and numerical methods show that the waves decay exponentially in the (2+1)(2+1) dimensional black hole background. However the falloff pattern of the conformal scalar waves in the Schwarzschild-anti-de Sitter background is generally neither exponential nor an inverse power rate, although the approximate falloff of the maximal peak is weakly exponential. We discuss the implications of these results for mass inflation.Comment: 34 pages, Latex, 26 figures, uses psfi

    Cosmological Models in Two Spacetime Dimensions

    Get PDF
    Various physical properties of cosmological models in (1+1) dimensions are investigated. We demonstrate how a hot big bang and a hot big crunch can arise in some models. In particular, we examine why particle horizons do not occur in matter and radiation models. We also discuss under what circumstances exponential inflation and matter/radiation decoupling can happen. Finally, without assuming any particular equation of state, we show that physical singularities can occur in both untilted and tilted universe models if certain assumptions are satisfied, similar to the (3+1)-dimensional cases.Comment: 22 pgs., 2 figs. (available on request) (revised version contains `paper.tex' macro file which was omitted in earlier version
    • …
    corecore