815 research outputs found
Formation of Compressed Flat Electron Beams with High Transverse-Emittance Ratios
Flat beams -- beams with asymmetric transverse emittances -- have important
applications in novel light-source concepts, advanced-acceleration schemes and
could possibly alleviate the need for damping rings in lepton colliders. Over
the last decade, a flat-beam-generation technique based on the conversion of an
angular-momentum-dominated beam was proposed and experimentally tested. In this
paper we explore the production of compressed flat beams. We especially
investigate and optimize the flat-beam transformation for beams with
substantial fractional energy spread. We use as a simulation example the
photoinjector of the Fermilab's Advanced Superconducting Test Accelerator
(ASTA). The optimizations of the flat beam generation and compression at ASTA
were done via start-to-end numerical simulations for bunch charges of 3.2 nC,
1.0 nC and 20 pC at ~37 MeV. The optimized emittances of flat beams with
different bunch charges were found to be 0.25 {\mu}m (emittance ratio is ~400),
0.13 {\mu}m, 15 nm before compression, and 0.41 {\mu}m, 0.20 {\mu}m, 16 nm
after full compression, respectively with peak currents as high as 5.5 kA for a
3.2-nC flat beam. These parameters are consistent with requirements needed to
excite wakefields in asymmetric dielectric-lined waveguides or produce
significant photon flux using small-gap micro-undulators.Comment: 17
Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers
Energy recovering an electron beam after it has participated in a
free-electron laser (FEL) interaction can be quite challenging because of the
substantial FEL-induced energy spread and the energy anti-damping that occurs
during deceleration. In the Jefferson Lab infrared FEL driver-accelerator, such
an energy recovery scheme was implemented by properly matching the longitudinal
phase space throughout the recirculation transport by employing the so-called
energy compression scheme. In the present paper,after presenting a
single-particle dynamics approach of the method used to energy-recover the
electron beam, we report on experimental validation of the method obtained by
measurements of the so-called "compression efficiency" and "momentum
compaction" lattice transfer maps at different locations in the recirculation
transport line. We also compare these measurements with numerical tracking
simulations.Comment: 31 pages, 13 figures, submitted to Phys. Rev. Special Topics A&
Current-induced nuclear-spin activation in a two-dimensional electron gas
Electrically detected nuclear magnetic resonance was studied in detail in a
two-dimensional electron gas as a function of current bias and temperature. We
show that applying a relatively modest dc-current bias, I_dc ~ 0.5 microAmps,
can induce a re-entrant and even enhanced nuclear spin signal compared with the
signal obtained under similar thermal equilibrium conditions at zero current
bias. Our observations suggest that dynamic nuclear spin polarization by small
current flow is possible in a two-dimensional electron gas, allowing for easy
manipulation of the nuclear spin by simple switching of a dc current.Comment: 5 pages, 3 fig
Classical percolation fingerprints in the high-temperature regime of the integer quantum Hall effect
We have performed magnetotransport experiments in the high-temperature regime
(up to 50 K) of the integer quantum Hall effect for two-dimensional electron
gases in semiconducting heterostructures. While the magnetic field dependence
of the classical Hall law presents no anomaly at high temperatures, we find a
breakdown of the Drude-Lorentz law for the longitudinal conductance beyond a
crossover magnetic field B_c ~ 1 T, which turns out to be correlated with the
onset of the integer quantum Hall effect at low temperatures. We show that the
high magnetic field regime at B > B_c can be understood in terms of classical
percolative transport in a smooth disordered potential. From the temperature
dependence of the peak longitudinal conductance, we extract scaling exponents
which are in good agreement with the theoretically expected values. We also
prove that inelastic scattering on phonons is responsible for dissipation in a
wide temperature range going from 1 to 50 K at high magnetic fields.Comment: 14 pages + 8 Figure
Intrinsic Gap of the nu=5/2 Fractional Quantum Hall State
The fractional quantum Hall effect is observed at low field, in a regime
where the cyclotron energy is smaller than the Coulomb interaction. The nu=5/2
excitation gap is measured to be 262+/-15 mK at ~2.6 T, in good agreement with
previous measurements performed on samples with similar mobility, but with
electronic density larger by a factor of two. The role of disorder on the
nu=5/2 gap is examined. Comparison between experiment and theory indicates that
a large discrepancy remains for the intrinsic gap extrapolated from the
infinite mobility (zero disorder) limit. In contrast, no such large discrepancy
is found for the nu=1/3 Laughlin state. The observation of the nu=5/2 state in
the low-field regime implies that inclusion of non-perturbative Landau level
mixing may be necessary to better understand the energetics of half-filled
fractional quantum hall liquids.Comment: 5 pages, 4 figures; typo corrected, comment expande
Contrasting Behavior of the 5/2 and 7/3 Fractional Quantum Hall Effect in a Tilted Field
Using a tilted field geometry, the effect of an in-plane magnetic field on
the even denominator nu = 5/2 fractional quantum Hall state is studied. The
energy gap of the nu = 5/2 state is found to collapse linearly with the
in-plane magnetic field above ~0.5 T. In contrast, a strong enhancement of the
gap is observed for the nu = 7/3 state. The radically distinct tilted-field
behaviour between the two states is discussed in terms of Zeeman and
magneto-orbital coupling within the context of the proposed Moore-Read pfaffian
wavefunction for the 5/2 fractional quantum Hall effect
Magneto-resistance quantum oscillations in a magnetic two-dimensional electron gas
Magneto-transport measurements of Shubnikov-de Haas (SdH) oscillations have
been performed on two-dimensional electron gases (2DEGs) confined in CdTe and
CdMnTe quantum wells. The quantum oscillations in CdMnTe, where the 2DEG
interacts with magnetic Mn ions, can be described by incorporating the
electron-Mn exchange interaction into the traditional Lifshitz-Kosevich
formalism. The modified spin splitting leads to characteristic beating pattern
in the SdH oscillations, the study of which indicates the formation of Mn
clusters resulting in direct anti-ferromagnetic Mn-Mn interaction. The Landau
level broadening in this system shows a peculiar decrease with increasing
temperature, which could be related to statistical fluctuations of the Mn
concentration.Comment: 8 pages, 6 figure
Generation of angular-momentum-dominated electron beams from a photoinjector
Various projects under study require an angular-momentum-dominated electron
beam generated by a photoinjector. Some of the proposals directly use the
angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while
others require the beam to be transformed into a flat beam (e.g. possible
electron injectors for light sources and linear colliders). In this paper, we
report our experimental study of an angular-momentum-dominated beam produced in
a photoinjector, addressing the dependencies of angular momentum on initial
conditions. We also briefly discuss the removal of angular momentum. The
results of the experiment, carried out at the Fermilab/NICADD Photoinjector
Laboratory, are found to be in good agreement with theoretical and numerical
models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam
- …