815 research outputs found

    Formation of Compressed Flat Electron Beams with High Transverse-Emittance Ratios

    Full text link
    Flat beams -- beams with asymmetric transverse emittances -- have important applications in novel light-source concepts, advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat-beam-generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat-beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of the Fermilab's Advanced Superconducting Test Accelerator (ASTA). The optimizations of the flat beam generation and compression at ASTA were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 {\mu}m (emittance ratio is ~400), 0.13 {\mu}m, 15 nm before compression, and 0.41 {\mu}m, 0.20 {\mu}m, 16 nm after full compression, respectively with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.Comment: 17

    Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers

    Get PDF
    Energy recovering an electron beam after it has participated in a free-electron laser (FEL) interaction can be quite challenging because of the substantial FEL-induced energy spread and the energy anti-damping that occurs during deceleration. In the Jefferson Lab infrared FEL driver-accelerator, such an energy recovery scheme was implemented by properly matching the longitudinal phase space throughout the recirculation transport by employing the so-called energy compression scheme. In the present paper,after presenting a single-particle dynamics approach of the method used to energy-recover the electron beam, we report on experimental validation of the method obtained by measurements of the so-called "compression efficiency" and "momentum compaction" lattice transfer maps at different locations in the recirculation transport line. We also compare these measurements with numerical tracking simulations.Comment: 31 pages, 13 figures, submitted to Phys. Rev. Special Topics A&

    Current-induced nuclear-spin activation in a two-dimensional electron gas

    Full text link
    Electrically detected nuclear magnetic resonance was studied in detail in a two-dimensional electron gas as a function of current bias and temperature. We show that applying a relatively modest dc-current bias, I_dc ~ 0.5 microAmps, can induce a re-entrant and even enhanced nuclear spin signal compared with the signal obtained under similar thermal equilibrium conditions at zero current bias. Our observations suggest that dynamic nuclear spin polarization by small current flow is possible in a two-dimensional electron gas, allowing for easy manipulation of the nuclear spin by simple switching of a dc current.Comment: 5 pages, 3 fig

    Classical percolation fingerprints in the high-temperature regime of the integer quantum Hall effect

    Full text link
    We have performed magnetotransport experiments in the high-temperature regime (up to 50 K) of the integer quantum Hall effect for two-dimensional electron gases in semiconducting heterostructures. While the magnetic field dependence of the classical Hall law presents no anomaly at high temperatures, we find a breakdown of the Drude-Lorentz law for the longitudinal conductance beyond a crossover magnetic field B_c ~ 1 T, which turns out to be correlated with the onset of the integer quantum Hall effect at low temperatures. We show that the high magnetic field regime at B > B_c can be understood in terms of classical percolative transport in a smooth disordered potential. From the temperature dependence of the peak longitudinal conductance, we extract scaling exponents which are in good agreement with the theoretically expected values. We also prove that inelastic scattering on phonons is responsible for dissipation in a wide temperature range going from 1 to 50 K at high magnetic fields.Comment: 14 pages + 8 Figure

    Intrinsic Gap of the nu=5/2 Fractional Quantum Hall State

    Full text link
    The fractional quantum Hall effect is observed at low field, in a regime where the cyclotron energy is smaller than the Coulomb interaction. The nu=5/2 excitation gap is measured to be 262+/-15 mK at ~2.6 T, in good agreement with previous measurements performed on samples with similar mobility, but with electronic density larger by a factor of two. The role of disorder on the nu=5/2 gap is examined. Comparison between experiment and theory indicates that a large discrepancy remains for the intrinsic gap extrapolated from the infinite mobility (zero disorder) limit. In contrast, no such large discrepancy is found for the nu=1/3 Laughlin state. The observation of the nu=5/2 state in the low-field regime implies that inclusion of non-perturbative Landau level mixing may be necessary to better understand the energetics of half-filled fractional quantum hall liquids.Comment: 5 pages, 4 figures; typo corrected, comment expande

    Contrasting Behavior of the 5/2 and 7/3 Fractional Quantum Hall Effect in a Tilted Field

    Full text link
    Using a tilted field geometry, the effect of an in-plane magnetic field on the even denominator nu = 5/2 fractional quantum Hall state is studied. The energy gap of the nu = 5/2 state is found to collapse linearly with the in-plane magnetic field above ~0.5 T. In contrast, a strong enhancement of the gap is observed for the nu = 7/3 state. The radically distinct tilted-field behaviour between the two states is discussed in terms of Zeeman and magneto-orbital coupling within the context of the proposed Moore-Read pfaffian wavefunction for the 5/2 fractional quantum Hall effect

    Magneto-resistance quantum oscillations in a magnetic two-dimensional electron gas

    Get PDF
    Magneto-transport measurements of Shubnikov-de Haas (SdH) oscillations have been performed on two-dimensional electron gases (2DEGs) confined in CdTe and CdMnTe quantum wells. The quantum oscillations in CdMnTe, where the 2DEG interacts with magnetic Mn ions, can be described by incorporating the electron-Mn exchange interaction into the traditional Lifshitz-Kosevich formalism. The modified spin splitting leads to characteristic beating pattern in the SdH oscillations, the study of which indicates the formation of Mn clusters resulting in direct anti-ferromagnetic Mn-Mn interaction. The Landau level broadening in this system shows a peculiar decrease with increasing temperature, which could be related to statistical fluctuations of the Mn concentration.Comment: 8 pages, 6 figure

    Generation of angular-momentum-dominated electron beams from a photoinjector

    Get PDF
    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam
    • …
    corecore