216 research outputs found
An Oort cloud origin of the Halley-type comets
The origin of the Halley-type comets (HTCs) is one of the last mysteries of
the dynamical evolution of the Solar System. Prior investigation into their
origin has focused on two source regions: the Oort cloud and the Scattered
Disc. From the former it has been difficult to reproduce the non-isotropic,
prograde skew in the inclination distribution of the observed HTCs without
invoking a multi-component Oort cloud model and specific fading of the comets.
The Scattered Disc origin fares better but suffers from needing an order of
magnitude more mass than is currently advocated by theory and observations.
Here we revisit the Oort cloud origin and include cometary fading. Our
observational sample stems from the JPL catalogue. We only keep comets
discovered and observed after 1950 but place no a priori restriction on the
maximum perihelion distance of observational completeness. We then numerically
evolve half a million comets from the Oort cloud through the realm of the giant
planets and keep track of their number of perihelion passages with perihelion
distance q<2.5AU, below which the activity is supposed to increase
considerably. We can simultaneously fit the HTC inclination and semi-major axis
distribution very well with a power law fading function of the form m^-k, where
m is the number of perihelion passages with q<2.5 AU and k is the fading index.
We match both the inclination and semi-major axis distributions when k~1 and
the maximum imposed perihelion distance of the observed sample is q~1.8AU. The
value of k is higher than the one obtained for the Long-Period Comets (LPCs),
with k~0.7. This increase in k is most likely the result of cometary surface
processes. We argue the HTC sample is now most likely complete for q<1.8AU. We
calculate that the steady-state number of active HTCs with diameter D>2.3km and
q<1.8AU is of the order of 100.Comment: Accepted for publication in Astronomy and Astrophysic
An Oort cloud origin for the high-inclination, high-perihelion Centaurs
We analyse the origin of three Centaurs with perihelia in the range 15 AU to
30 AU, inclinations above 70 deg and semi-major axes shorter than 100 AU. Based
on long-term numerical simulations we conclude that these objects most likely
originate from the Oort cloud rather than the Kuiper Belt or Scattered Disc. We
estimate that there are currently between 1 and 200 of these high-inclination,
high-perihelion Centaurs with absolute magnitude H<8.Comment: Accepted for publication in MNRA
How primordial is the structure of comet 67P/C-G? Combined collisional and dynamical models suggest a late formation
There is an active debate about whether the properties of comets as observed
today are primordial or, alternatively, if they are a result of collisional
evolution or other processes. We investigate the effects of collisions on a
comet with a structure like 67P/C-G. We develop scaling laws for the critical
specific impact energies required for a significant shape alteration. These are
then used in simulations of the combined dynamical and collisional evolution of
comets in order to study the survival probability of a primordially formed
object with a shape like 67P/C-G. The effects of impacts on comet 67P/C-G are
studied using a SPH shock physics code. The resulting critical specific impact
energy defines a minimal projectile size which is used to compute the number of
shape-changing collisions in a set of dynamical simulations. These simulations
follow the dispersion of the trans-Neptunian disk during the giant planet
instability, the formation of a scattered disk, and produce 87 objects that
penetrate into the inner solar system with orbits consistent with the observed
JFC population. The collisional evolution before the giant planet instability
is not considered here. Hence, our study is conservative in its estimation of
the number of collisions. We find that in any scenario considered here, comet
67P/C-G would have experienced a significant number of shape-changing
collisions, if it formed primordially. This is also the case for generic
bi-lobe shapes. Our study also shows that impact heating is very localized and
that collisionally processed bodies can still have a high porosity. Our study
indicates that the observed bi-lobe structure of comet 67P/C-G may not be
primordial, but might have originated in a rather recent event, possibly within
the last 1 Gy. This may be the case for any kilometer-sized two-component
cometary nuclei.Comment: Astronomy & Astrophysics, accepted pending minor revision
- …