3,380 research outputs found

    High-energy emission of fast rotating white dwarfs

    Full text link
    The process of energy release in the magnetosphere of a fast rotating, magnetized white dwarf can be explained in terms of the canonical spin-powered pulsar model. Applying this model to the white dwarf companion of the low mass close binary AE Aquarii leads us to the following conclusions. First, the system acts as an accelerator of charged particles whose energy is limited to E_p < 3 TeV and which are ejected from the magnetosphere of the primary with the rate L_kin < 10^{32} erg/s. Due to the curvature radiation of the accelerated primary electrons the system should appear as a source of soft gamma-rays (~ 100 keV) with the luminosity < 3x10^{27} erg/s. The TeV emission of the system is dominated by the inverse Compton scattering of optical photons on the ultrarelativistic electrons. The optical photons are mainly contributed by the normal companion and the stream of material flowing through the magnetosphere of the white dwarf. The luminosity of the TeV source depends on the state of the system (flaring/quiet) and is limited to < 5x10^{29} erg/s. These results allow us to understand a lack of success in searching for the high-energy emission of AE Aqr with the Compton Gamma-ray Observatory and the Whipple Observatory.Comment: 8 pages, accepted for publication in A&

    Competing itinerant and localized states in strongly correlated BaVS3_3

    Full text link
    The electronic structure of the quasi-lowdimensional vanadium sulfide \bavs3 is investigated for the different phases above the magnetic ordering temperature. By means of density functional theory and its combination with dynamical-mean field theory, we follow the evolution of the relevant low-energy electronic states on cooling. Hence we go in the metallic regime from the room temperature hexagonal phase to the orthorhombic phase after the first structural transition, and close with the monoclinic insulating phase below the metal-insulator transition. Due to the low symmetry and expected intersite correlations, the latter phase is treated within cellular dynamical mean-field theory. It is generally discussed how the intriguing interplay between band-structure and strong-correlation effects leads to the stabilization of the various electronic phases with decreasing temperature.Comment: 12 pages, submitted to PR

    TeV Cherenkov Events as Bose-Einstein Gamma Condensations

    Get PDF
    The recent detection of gamma radiation from Mkn 501 at energies as high as 25 TeV suggests stringent upper bounds on the diffuse, far infrared, extragalactic radiation density. The production of electron-positron pairs through photon-photon collisions would prevent gamma photons of substantially higher energies from reaching us across distances of order 100 Mpc. However, coherently arriving TeV or sub-TeV gammas - Bose-Einstein condensations of photons at these energies - could mimic the Cherenkov shower signatures of extremely energetic gammas. To better understand such events, we describe their observational traits and discuss how they might be generated.Comment: 12 pages, 2 figures, accepted for publication in Ap.J.(Lett.

    Apropos Briefwechsel A. v. Humboldts mit C. F. Gauss

    Get PDF

    Links between electrophilic stress and antifungal resistance in pathogenic Candida species

    Get PDF
    Collectively, Candida species are the most prevalent cause of both superficial and invasive fungal infections worldwide. Invasive Candida infections have a high mortality rate and predominantly affect individuals with underlying diseases, such as diabetes, HIV, or cancer. Unfortunately, many invasive Candida infections are recalcitrant to antifungal treatment, while intrinsically multidrug-resistant pathogens, like Candida auris, are increasing in prevalence. Although the canonical mechanisms of antifungal resistance in Candida species are well established, i.e., overexpression of efflux pumps and overexpression of or mutations in genes encoding drug targets, factors affecting the natural evolution and regulation of resistance mechanisms remain poorly understood. One cause of antifungal resistance in Candida species is the acquisition of gain-of-function mutations in the transcription factor Mrr1, resulting in overexpression of the multidrug transporter Mdr1. However, little is known about the functions of other genes regulated by Mrr1 or how Mrr1 activity is modulated in vivo. In this work, we demonstrate in Candida lusitaniae and in C. auris that Mrr1 contributes to resistance against methylglyoxal (MG), a toxic, electrophilic dicarbonyl derived from natural metabolic processes, and that Mrr1-mediated MG resistance is driven in part by expression of the methylglyoxal reductase genes MGD1 and MGD2 in C. lusitaniae and MGD1 in C. auris. Furthermore, we show that a sublethal concentration of MG induces expression of MDR1 and MG reductase genes in C. lusitaniae and C. auris, and consequently increases fluconazole (FLZ) resistance in C. lusitaniae. Finally, we characterize the complete Mrr1- dependent and independent transcriptional response of C. auris to MG and to the known inducer of Mrr1-regulated gene expression, benomyl, and show that both compounds cause the differential expression of a multitude of genes involved in metabolism and stress response, which could contribute to pathogen survival while colonizing and infecting a mammalian host. Together, the work presented herein provides valuable insight into a potential mechanism for the regulation of Mrr1-dependent transcription in vivo as well as a possible selective pressure for gain-of-function mutations in the MRR1 gene. This is particularly noteworthy because MG is elevated in many of the same human diseases that are considered risk factors for Candida infection, and MG is also produced by activated phagocytes in response to pathogens. Thus, it is conceivable that Candida would encounter biologically significant levels of MG in the context of infection. We propose that MG-mediated induction of Mrr1-dependent transcription in Candida species is one factor that plays a role in antifungal treatment failure

    Correlation between Compact Radio Quasars and Ultra-High Energy Cosmic Rays

    Get PDF
    Some proposals to account for the highest energy cosmic rays predict that they should point to their sources. We study the five highest energy events (E>10^20 eV) and find they are all aligned with compact, radio-loud quasars. The probability that these alignments are coincidental is 0.005, given the accuracy of the position measurements and the rarity of such sources. The source quasars have redshifts between 0.3 and 2.2. If the correlation pointed out here is confirmed by further data, the primary must be a new hadron or one produced by a novel mechanism.Comment: 8 pages, 3 tables, revtex. with some versions of latex it's necessary to break out the tables and latex them separately using article.sty rather than revtex.st
    • …
    corecore