182 research outputs found
Assessing forest structure and composition along the altitudinal gradient in the state of Sikkim, Eastern Himalayas, India
Understanding the structure and composition of native forests is a prerequisite in developing an adaptive forest management plan for Himalayan forest ecosystems where climate change is rapid. However, basic information on forest structure and composition are still limited in many places of the Eastern Himalayas. In this study, we aimed to understand the diversity, structure, and composition of forests and their variations along an altitudinal gradient in Himalayan forests. The study was conducted in the Indian federal state of Sikkim, Eastern Himalayas. We carried out a comprehensive and comparative evaluation of species diversity, stand basal area, and stem density along the altitudinal gradient from 900 m a.s.l. to 3200 m a.s.l. We used stratified random sampling to survey eighty-three plots each 0.1 ha in forest communities that occurred along the altitudinal gradient: (a) lower (900–1700 m) altitude forest (N = 24), (b) mid (1700–2500 m) altitude forests (N = 37), and (c) higher (2500–3200 m)altitude forests (N = 22). We measured and identified all living trees with a >3 cm diameter at breast height in each plot. We counted 10,344 individual plants, representing 114 woody species belonging to 42 families and 75 genera. The family Fagaceae and its species Lithocarpus pachyphyllus (Kurz) Rehder. were reported as the most dominant forest trees with the highest Importance Value Index. The Shannon diversity index was recorded as being the highest for the low-altitude forests, whereas measures of structural diversity varied among forests along with altitude: the mid-altitude forests recorded the highest stem density and the high-altitude forests showed the highest mean stem DBH (diameter at 1.3 m height). One significant finding of our study was the disparity of the size class distribution among forests along the altitudinal gradient. Overall, we found a reverse J-shape distribution of tree diameter signifying the uneven-agedness. However, we showed, for the first time, a complete lack of large trees (>93 cm DBH) in the lower altitude forests. Our study highlights conservation concerns for the low-altitude forests that record high species diversity, although lacked large-diameter trees. We anticipate that our study will provide a comprehensive understanding of forest diversity, composition, and structure along the altitudinal gradient to design conservation and sustainable management strategies
Role of transpiration in modulating ecosystem services in secondary tropical montane forests of Eastern Himalaya in India
Secondary tropical forests provide critical hydrological services through modulating transpiration and soil infiltration of precipitation. However, vegetation studies establishing direct mechanistic linkages between stand transpiration, soil moisture and streamflow are significantly lacking in tropical montane forests (TMFs) in Himalaya. We quantified the impact of diel and seasonal transpiration on catchment water balance and lean season streamflow in a broad-leaved evergreen secondary TMF in Eastern Himalaya. Stand transpiration (T) and streamflow (Q) were measured concurrently at one of the wettest (4500 mm yr−1) and highest elevation (2100 m) sites worldwide to date. The observed daily transpiration rates (1.29±0.99 mm d − 1) were double the reported values from TMFs in relatively drier Central Himalaya but at the lower bound of TMFs globally. Moderate precipitation pulses (10–25 mm volume) followed by clear skies significantly increased stand transpiration. The proportional contribution of evaporative losses (50–77%) and stand transpiration (2–13%) to catchment water balance increased with the progression of the wet season. The phase lags between T, soil moisture (S) and Q were confounded by significant pre-dawn sap flux movement and the presence of secondary diel peaks. Transpiration was a significant predictor of streamflow in the dry season and, to a lesser extent, in the wet season. Thus, changes in vegetation cover and precipitation patterns will likely impact hydrological services from the regenerating secondary TMFs and the regional water security in the Eastern Himalaya
Hazards in the Wake of Climate Change Induced Extreme Weather Events and Their Impact on Indian Fisheries
Climate change, whether driven by natural or human forcing, can lead to
changes in the likelihood of the occurrence or strength of extreme weather and
climate events or both. In recent past, the increased occurrence of extreme climatic
events has caused enormous damage t
Association of Panton Valentine Leukocidin (PVL) genes with methicillin resistant Staphylococcus aureus (MRSA) in Western Nepal: a matter of concern for community infections (a hospital based prospective study)
BACKGROUND: Methicillin resistant Staphylococcus aureus (MRSA) is a major human pathogen associated with nosocomial and community infections. Panton Valentine leukocidin (PVL) is considered one of the important virulence factors of S. aureus responsible for destruction of white blood cells, necrosis and apoptosis and as a marker of community acquired MRSA. This study was aimed to determine the prevalence of PVL genes among MRSA isolates and to check the reliability of PVL as marker of community acquired MRSA isolates from Western Nepal. METHODS: A total of 400 strains of S. aureus were collected from clinical specimens and various units (Operation Theater, Intensive Care Units) of the hospital and 139 of these had been confirmed as MRSA by previous study. Multiplex PCR was used to detect mecA and PVL genes. Clinical data as well as antimicrobial susceptibility data was analyzed and compared among PVL positive and negative MRSA isolates. RESULTS: Out of 139 MRSA isolates, 79 (56.8 %) were PVL positive. The majority of the community acquired MRSA (90.4 %) were PVL positive (Positive predictive value: 94.9 % and negative predictive value: 86.6 %), while PVL was detected only in 4 (7.1 %) hospital associated MRSA strains. None of the MRSA isolates from hospital environment was found positive for the PVL genes. The majority of the PVL positive strains (75.5 %) were isolated from pus samples. Antibiotic resistance among PVL negative MRSA isolates was found higher as compared to PVL positive MRSA. CONCLUSION: Our study showed high prevalence of PVL among community acquired MRSA isolates. Absence of PVL among MRSA isolates from hospital environment indicates its poor association with hospital acquired MRSA and therefore, PVL may be used a marker for community acquired MRSA. This is first study from Nepal, to test PVL among MRSA isolates from hospital environment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-016-1531-1) contains supplementary material, which is available to authorized users
Lectins: production and practical applications
Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities
Lapatinib Induces Autophagy, Apoptosis and Megakaryocytic Differentiation in Chronic Myelogenous Leukemia K562 Cells
Lapatinib is an oral, small-molecule, dual tyrosine kinase inhibitor of epidermal growth factor receptors (EGFR, or ErbB/Her) in solid tumors. Little is known about the effect of lapatinib on leukemia. Using human chronic myelogenous leukemia (CML) K562 cells as an experimental model, we found that lapatinib simultaneously induced morphological changes resembling apoptosis, autophagy, and megakaryocytic differentiation. Lapatinib-induced apoptosis was accompanied by a decrease in mitochondrial transmembrane potential and was attenuated by the pancaspase inhibitor z-VAD-fmk, indicating a mitochondria-mediated and caspase-dependent pathway. Lapatinib-induced autophagic cell death was verified by LC3-II conversion, and upregulation of Beclin-1. Further, autophagy inhibitor 3-methyladenine as well as autophagy-related proteins Beclin-1 (ATG6), ATG7, and ATG5 shRNA knockdown rescued the cells from lapatinib-induced growth inhibition. A moderate number of lapatinib-treated K562 cells exhibited features of megakaryocytic differentiation. In summary, lapatinib inhibited viability and induced multiple cellular events including apoptosis, autophagic cell death, and megakaryocytic differentiation in human CML K562 cells. This distinct activity of lapatinib against CML cells suggests potential for lapatinib as a therapeutic agent for treatment of CML. Further validation of lapatinib activity in vivo is warranted
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
- …