294 research outputs found

    Recombination dynamics in bacterial photosynthetic reaction centers

    Get PDF
    The time dependence of magnetic field effects on light absorption by triplet-state and radical ions in quinone-depleted reaction centers of Rhodopseudomonas sphaeroides strain R-26 has been investigated. Measurements on the time scale of the hyperfine interaction in the radical pair [(BChl)2+. ...BPh-.)] provided kinetic data characterizing the recombination process. The results have been interpreted in terms of a recently proposed model that assumes an intermediate electron acceptor (close site) between the bacteriochlorophyll "special pair" (BChl)2 and the bacteriopheophytin BPh (distant site). Recombination is assumed to proceed through this intermediate acceptor. The experiments led to effective recombination rates for the singlet and triplet channel: k(Seff) = 3.9 . 107 s-1 and k(Teff) = 7.4 . 10(8) s-1. These correspond to recombination rates ks = 1 . 10(1) s-1 and kT = 7.1 . 10(11) s-1 in the close configuration. The upper bound of the effective spin dephasing rate k2eff approximately equal to 1 . 10(9) s-1 is identical with the rate of the electron hopping between the distant site of zero spin exchange interaction and the close site of large interaction. Interpretation of data for the case of direct recombination yields the recombination rates, spin dephasing rate, and exchange interaction in a straightforward way

    Recent advances in describing and driving crystal nucleation using machine learning and artificial intelligence

    Full text link
    With the advent of faster computer processors and especially graphics processing units (GPUs) over the last few decades, the use of data-intensive machine learning (ML) and artificial intelligence (AI) has increased greatly, and the study of crystal nucleation has been one of the beneficiaries. In this review, we outline how ML and AI have been applied to address four outstanding difficulties of crystal nucleation: how to discover better reaction coordinates (RCs) for describing accurately non-classical nucleation situations; the development of more accurate force fields for describing the nucleation of multiple polymorphs or phases for a single system; more robust identification methods for determining crystal phases and structures; and as a method to yield improved course-grained models for studying nucleation.Comment: 15 pages; 1 figur

    Simulation of space-borne tsunami detection using GNSS-Reflectometry applied to tsunamis in the Indian Ocean

    Get PDF
    Within the German-Indonesian Tsunami Early Warning System project GITEWS (Rudloff et al., 2009), a feasibility study on a future tsunami detection system from space has been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative way of using reflected GNSS signals for remote sensing, e.g. sea surface altimetry. In contrast to conventional satellite radar altimetry, multiple height measurements within a wide field of view can be made simultaneously. With a dedicated Low Earth Orbit (LEO) constellation of satellites equipped with GNSS-R, densely spaced sea surface height measurements could be established to detect tsunamis. This simulation study compares the Walker and the meshed comb constellation with respect to their global reflection point distribution. The detection performance of various LEO constellation scenarios with GPS, GLONASS and Galileo as signal sources is investigated. The study concentrates on the detection performance for six historic tsunami events in the Indian Ocean generated by earthquakes of different magnitudes, as well as on different constellation types and orbit parameters. The GNSS-R carrier phase is compared with the PARIS or code altimetry approach. The study shows that Walker constellations have a much better reflection point distribution compared to the meshed comb constellation. Considering simulation assumptions and assuming technical feasibility it can be demonstrated that strong tsunamis with magnitudes (<i>M</i>) ≥8.5 can be detected with certainty from any orbit altitude within 15–25 min by a 48/8 or 81/9 Walker constellation if tsunami waves of 20 cm or higher can be detected by space-borne GNSS-R. The carrier phase approach outperforms the PARIS altimetry approach especially at low orbit altitudes and for a low number of LEO satellites

    First results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite

    Get PDF
    GPS radio occultation events observed between 24 July and 17 November 2008 by the IGOR occultation receiver aboard the TerraSAR-X satellite are processed and analyzed. The comparison of 15 327 refractivity profiles with collocated ECMWF data yield a mean bias between zero and −0.30 % at altitudes between 5 and 30 km. Standard deviations decrease from about 1.4 % at 5 km to about 0.6 % at 10 km altitude, however, increase significantly in the upper stratosphere. At low latitudes mean biases and standard deviations are larger, in particular in the lower troposphere. The results are consistent with 15 159 refractivity observations collected during the same time period by the BlackJack receiver aboard GRACE-A and processed by GFZ's operational processing system. The main difference between the two occultation instruments is the implementation of open-loop signal tracking in the IGOR (TerraSAR-X) receiver which improves the tropospheric penetration depth in terms of ray height by about 2 km compared to the conventional closed-loop data acquired by BlackJack (GRACE-A)

    Citizens, bribery and the propensity to protest

    Get PDF
    It is widely assumed that the more one experiences corruption the more likely one is to want to protest about it. Yet empirical evidence illustrating this is thin on the ground. This paper fills that gap by focusing on the extent to which self-reported experience of bribery affects the willingness to engage in protests against corruption in Africa. We find that the more one experiences bribery the more one is likely to support anti-corruption protests. A further unexpected finding is that the personal experience of corruption also increases the willingness to rely on bribes to solve public administration problems

    Dinucleotides as simple models of the base stacking-unstacking component of DNA 'breathing' mechanisms

    Get PDF
    14 pagesRegulatory protein access to the DNA duplex 'interior' depends on local DNA 'breathing' fluctuations, and the most fundamental of these are thermally-driven base stacking-unstacking interactions. The smallest DNA unit that can undergo such transitions is the dinucleotide, whose structural and dynamic properties are dominated by stacking, while the ion condensation, cooperative stacking and inter-base hydrogen-bonding present in duplex DNA are not involved. We use dApdA to study stacking-unstacking at the dinucleotide level because the fluctuations observed are likely to resemble those of larger DNA molecules, but in the absence of constraints introduced by cooperativity are likely to be more pronounced, and thus more accessible to measurement. We study these fluctuations with a combination of Molecular Dynamics simulations on the microsecond timescale and Markov State Model analyses, and validate our results by calculations of circular dichroism (CD) spectra, with results that agree well with the experimental spectra. Our analyses show that the CD spectrum of dApdA is defined by two distinct chiral conformations that correspond, respectively, to a Watson-Crick form and a hybrid form with one base in a Hoogsteen configuration. We find also that ionic structure and water orientation around dApdA play important roles in controlling its breathing fluctuations.This research was supported by a grant from the National Institute of Child Health and Human Development (5R01HD081 362-05) awarded to L.S. and N.B.A. The funding sources had no role in the study design, data collection and analysis, or submission process
    corecore