31 research outputs found
Dendrimer-aktivierte Chipmatrix für die Herstellung von Nukleinsäure- und Protein-Microarrays
Für die Herstellung von Microarrays durch Immobilisierung bioorganischer Sondenmoleküle, wie DNA-Fragmente oder Proteine, mittels automatisierter Dispenser- oder Plottersysteme werden modifizierte Oberflächen benötigt, die eine physikalische oder chemische Bindung zum Biomolekül ausbilden können. Als Trägermaterial für die Herstellung von Microarrays hat sich aufgrund seiner hohen mechanischen und chemischen Stabilität, sowie seiner geringen Eigenfluoreszenz Glas bewährt. Damit Biochip-basierte Analysen reproduzierbar und mit hoher Nachweisempfindlichkeit durchgeführt werden können, ist es unabdingbar, daß die Modifikation einerseits homogen über die gesamte Chipoberfläche verläuft und andererseits eine hohe Dichte aktiver Kopplungsstellen für das Sondenmolekül bereitstellt. Desweiteren ist es wünschenswert, daß einmal eingesetzte Microarrays durch Regeneration wiederverwendet werden können. Zur Zeit gängige Verfahren, wie z. B. das UV-induzierte Crosslinking an amino-funktionalisierte oder polyamidbeschichtete Trägersysteme, sowie die Chemisorption thiolierter Verbindungen an Gold weisen diesbezüglich erhebliche Defizite auf. Verbesserte Eigenschaften lassen sich erzielen, wenn die Immobilisierung kovalent über ein Linkersystem zwischen Trägermaterial und Biomolekül erfolgt. Wir berichten hier über ein Modifikationsverfahren, das durch den Aufbau einer dendritischen Polymerschicht eine hocheffiziente, kovalente Immobilisierung von Sondenmolekülen erlaubt
Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays
BACKGROUND: Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. RESULTS: We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5'-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. CONCLUSIONS: Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different surfaces in dependence of the applied spotting and reaction volume