122 research outputs found

    Etude numérique de la fusion/solidification par un couplage hybride Boltzmann/Volumes finis

    No full text
    On se propose de développer un couplage hybride de la méthode de Gaz sur Réseau ou lattice Boltzmann (LBM) et de la méthode des volumes finis (VF) pour étudier les problèmes de changement de phase solide/liquide. La méthode LBM est utilisée pour déterminer le champ des vitesses tandis que la méthode des volumes finis est appliquée à la détermination du champ de température. Ce modèle est validé en comparaison avec les résultats de test concernant une cavité carrée différentiellement chauffée sans changement de phase puis pour la fusion du Gallium dans une cavité allongée

    Vortices, dissipation and flow transition in volatile binary drops

    Get PDF
    AbstractDespite its fundamental and practical relevance, flow structure and evolution within volatile mixture drops remains largely unexplored. We study experimentally, using particle image velocimetry (PIV), the evolution of internal flow during the evaporation of ethanol–water mixture drops for different initial concentrations. The investigation revealed the existence of three stages in the evolving flow behaviour within these binary volatile drops. We propose an analysis of the nature of the flow and focus on understanding successive flow stages as well as transition from multiple vortices to a monotonic outward flow. We show that the existence of multiple vortices during the first stage is driven by local concentration gradients along the interface. When the more volatile component (in this case ethanol) is depleted, the intensity of this Marangoni flow abruptly declines. Towards the end of the first stage, ethanol is driven from the bulk of the drop to the interface to sustain weakening concentration gradients. Once these gradients are too weak, the solutal Marangoni number becomes sub-critical and the driving force for the flow switches off. The evolution of flow structure and transition between stages is found to be well correlated with the ratio of Marangoni and Reynolds numbers. Furthermore, we argue that whilst the observed vortices are driven by surface tension shear stress originating at the liquid/vapour interface, the transition in flow and its dynamics is entirely determined by viscous dissipation. The comparison between the analytical expression for vorticity decay based on viscous dissipation and the experimental data shows a very good agreement. The analysis also shows that regardless of the initial concentration, for same sized drops, the transition in flow follows exactly the same trend. This further supports the hypothesis of a viscous dissipation transition of the flow. The last stage is satisfactorily explained based on non-uniform evaporation and continuity-driven flow.</jats:p

    Lubricant Rheological Behavior Effect Analysis on the Performance of Finite Porous Self- Lubricating Journal Bearings

    Get PDF
    In this paper, the hydrodynamic lubrication of finite porous self-lubricating journal bearings is investigated taking into account the rheological lubricant behavior effect. The modified Reynolds equation is derived by considering both the fluid flow in the porous matrix and the lubricant rheological behavior where Darcy’s law and power- law model were used. Governing differential equations were solved numerically using the finite difference method. Static characteristics are obtained by considering three types of lubricants: pseudo-plastic, dilatant and Newtonian fluids. Obtained results showed that the power law index, n, has important effects on the performance of porous and non-porous bearings. An improvement in the fluid bearing characteristics (load capacity, pressure) is observed for dilatant fluids (n>1) while these characteristics decreased for pseudo-plastic fluids (n<1). The permeability of the porous structure has significant effects on the performance of porous journal bearings of finite length, particularly at higher eccentricity ratios. Good agreement is observed between the results obtained in this study and those of literature revue

    Heterogeneous nanofluids: natural convection heat transfer enhancement

    Get PDF
    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case

    Optimal Scheduling of Multiproduct Pipeline System Using MILP Continuous Approach

    Get PDF
    Part 5: Planning and Scheduling; International audience; To date, the multiproduct pipeline transportation mode has nationally and internationally considerably evolved thanks to his efficiently and effectively of transporting several products. In this paper, we focus our study on the scheduling of a multiproduct pipeline system that receives a number of petroleum products (fuels) from a single refinery source in order to be distributed to several storage and distribution centers (depots). Mixed Integer Linear Programming (MILP) continuous mathematical approach is presented to solve this problem. The sequence of injected products in the same pipeline should be carefully studied, in order to meet market demands and ensure storage autonomy of the marketable pure products in the fuels depots on the one hand and to minimize the number of interfaces; Birth zone of mixture between two products in contact and in sequential flow, which may hinder the continuous operation of the pipeline system, by the necessity of additional storage capacity for this last mixture, that is in no way marketable and requires special processing operations. This work is applied on a real case of a multiproduct pipeline that feeds the western and southwestern region of Algeria with fuels. The obtained results based on the MILP continuous approach give an optimal scheduling of the multiproduct transport system with a minimized number of interfaces. Document type: Conference objec

    Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation

    Get PDF
    The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to sphericallysymmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications

    The modeling of dissolved gas effect on liquid transients

    No full text
    Transient cavitation of a homogeneous gas-liquid mixture flow is modeled for an elastic pipeline by using the classical conservation equations of each phase, which are, later on, written in dimensionless form. The later is resolved by a second order finite difference scheme for which a flux corrective transport algorithm is added as an additional step, in order to accomplish a suitable treatment of the shock problem. The flow gives rise to a localized vapor+gas cavity for which time and space expansion is calculated from the corresponding compatibility relation, continuity equation and ideal gas law. Also, effect of the degassing phenomenon, on this cavity and on the dynamic parameters, is reproduced from a macroscopic bubble growth model. Obtained results are discussed and compared with ones given by experimental dat

    A new gas release model for a homogeneous liquid–gas mixture flow in pipelines

    No full text
    The gas release phenomenon, resulting from a rapid decompression in a homogeneous gas–liquid flow is expressed by multiplying the mixture density by a degassing coefficient Gr. The effect of this coefficient is calculated by using the classical conservation equations of fluid mechanics and diffusion laws. These equations are solved by an improved new two time step finite difference scheme. The method of characteristics is used at the boundaries. The theoretical results obtained are in good agreement with experimental data and confirm the gas release effect on the flow parameters. q 2005 Elsevier Ltd. All rights reserve
    • …
    corecore