1,621 research outputs found

    OpenForensics:a digital forensics GPU pattern matching approach for the 21st century

    Get PDF
    Pattern matching is a crucial component employed in many digital forensic (DF) analysis techniques, such as file-carving. The capacity of storage available on modern consumer devices has increased substantially in the past century, making pattern matching approaches of current generation DF tools increasingly ineffective in performing timely analyses on data seized in a DF investigation. As pattern matching is a trivally parallelisable problem, general purpose programming on graphic processing units (GPGPU) is a natural fit for this problem. This paper presents a pattern matching framework - OpenForensics - that demonstrates substantial performance improvements from the use of modern parallelisable algorithms and graphic processing units (GPUs) to search for patterns within forensic images and local storage devices

    Near-ultrasonic covert channels using software-defined radio techniques

    Get PDF
    Traditional cybersecurity practices rely on computers only communicating through well-defined expected channels. If malware was developed to use covert channels, such as one created using ultrasonic sound, then this could bypass certain security measures found in computer networks. This paper aims to demonstrate the viability of acoustic covert channels by creating a low-bandwidth ultrasonic frequency channel utilising software-defined radio (SDR) techniques. Previous work was evaluated to identify the strengths and weaknesses of their implementations. Software-defined radio techniques were then applied to improve the performance and reliability of the acoustic covert channel. The proposed implementation was then evaluated over a range of hardware and compared to previous implantations based on the attributes of their throughput, range, and reliability. The outcome of this research was an ultrasonic covert channel implemented in GNU Radio. The proposed implementation was found to provide 47% higher throughput than previous work while using less signal bandwidth. Utilising software-defined radio techniques improves the performance of the acoustic covert channels over previous implementations. It is expected that this technique would be effective in an office environment, but less effective in high security or server environments due to the lack of audio equipment available in these spaces

    Geology and Hydrology of Rice County, Central Kansas

    Get PDF
    Sedimentary rocks of Paleozoic age and younger underlie Rice County to a depth ranging from 3,700 to 4,100 feet. The oldest formations that crop out are the Ninnescah Shale, Stone Corral Formation, and the Harper Sandstone of Early Permian age. These formations are unconformably overlain by rocks of Cretaceous age consisting of the Cheyenne Sandstone, Kiowa Formation, and Dakota Formation. Deposits of Pleistocene age that mantle most of the county are principally eolian sediments on the uplands and fluvial sediments in the valleys. The principal aquifer is in the Pleistocene fluvial deposits where yields to irrigation wells of 1,000 gpm (gallons per minute) are common and, locally, yields may be as much as 2,000 gpm. Sandstone aquifers in the Kiowa and Dakota Formations commonly yield an adequate supply of water for domestic and stock wells, and may yield as much as 150 gpm. The chemical quality of water in the Pleistocene deposits is a calcium bicarbonate type and is very hard. Water in the sandstone also is a calcium bicarbonate type where the overlying Pleistocene aquifer is in hydraulic connection. If an appreciable thickness of shale separates the aquifers, the water in the sandstone may be a sodium bicarbonate type, Highly mineralized water from formations below the Kiowa may occur at shallow depths as a result of local contamination by oil-field brines or industrial wastes. The principal mineral resource in 1969 was petroleum produced from 76 oil fields and 19 gas fields. Salt deposits ranging in thickness from 200 to 400 feet are a potential resource that have been utilized to a minor extent

    Development of sputtered high temperature coatings for thrust chambers

    Get PDF
    Adherent insulating coatings were developed for thrust chamber service. The coatings consisted of nickel and a ceramic, and were graded in composition from pure nickel at the thrust chamber wall to pure ceramic at the coating surface. The coatings were deposited by rf sputtering from a target with a reversed composition gradient, which was produced by plasma spraying powder mixtures. The effect of deposition parameters on coating characteristics and adherence is discussed

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade's Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets

    Isolation and expression of the human gametocyte-specific factor 1 gene (GTSF1) in fetal ovary, oocytes, and preimplantation embryos

    Get PDF
    Purpose: Gametocyte-specific factor 1 has been shown in other species to be required for the silencing of retrotransposons via the Piwi-interacting RNA (piRNA) pathway. In this study, we aimed to isolate and assess expression of transcripts of the gametocyte-specific factor 1 (GTSF1) gene in the human female germline and in preimplantation embryos. Methods: Complementary DNA (cDNA) libraries from human fetal ovaries and testes, human oocytes and preimplantation embryos and ovarian follicles isolated from an adult ovarian cortex biopsy were used to as templates for PCR, cloning and sequencing, and real time PCR experiments of GTSF1 expression. Results: GTSF1 cDNA clones that covered the entire coding region were isolated from human oocytes and preimplantation embryos. GTSF1 mRNA expression was detected in archived cDNAs from staged human ovarian follicles, germinal vesicle (GV) stage oocytes, metaphase II oocytes, and morula and blastocyst stage preimplantation embryos. Within the adult female germline, expression was highest in GV oocytes. GTSF1 mRNA expression was also assessed in human fetal ovary and was observed to increase during gestation, from 8 to 21 weeks, during which time oogonia enter meiosis and primordial follicle formation first occurs. In human fetal testis, GTSF1 expression also increased from 8 to 19 weeks. Conclusions: To our knowledge, this report is the first to describe the expression of the human GTSF1 gene in human gametes and preimplantation embryos

    In Defence of Modest Doxasticism About Delusions

    Get PDF
    Here I reply to the main points raised by the commentators on the arguments put forward in my Delusions and Other Irrational Beliefs (OUP, 2009). My response is aimed at defending a modest doxastic account of clinical delusions, and is articulated in three sections. First, I consider the view that delusions are in-between perceptual and doxastic states, defended by Jacob Hohwy and Vivek Rajan, and the view that delusions are failed attempts at believing or not-quite-beliefs, proposed by Eric Schwitzgebel and Maura Tumulty. Then, I address the relationship between the doxastic account of delusions and the role, nature, and prospects of folk psychology, which is discussed by Dominic Murphy, Keith Frankish, and Maura Tumulty in their contributions. In the final remarks, I turn to the continuity thesis and suggest that, although there are important differences between clinical delusions and non-pathological beliefs, these differences cannot be characterised satisfactorily in epistemic terms. \u

    Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic

    Get PDF
    The Arabidopsis thaliana Qa-SNARE SYP121 (=SYR1/PEN1) drives vesicle traffic at the plasma membrane of cells throughout the vegetative plant. It facilitates responses to drought, to the water stress hormone abscisic acid, and to pathogen attack, and it is essential for recovery from so-called programmed stomatal closure. How SYP121-mediated traffic is regulated is largely unknown, although it is thought to depend on formation of a fusion-competent SNARE core complex with the cognate partners VAMP721 and SNAP33. Like SYP121, the Arabidopsis Sec1/Munc18 protein SEC11 (=KEULE) is expressed throughout the vegetative plant. We find that SEC11 binds directly with SYP121 both in vitro and in vivo to affect secretory traffic. Binding occurs through two distinct modes, one requiring only SEC11 and SYP121 and the second dependent on assembly of a complex with VAMP721 and SNAP33. SEC11 competes dynamically for SYP121 binding with SNAP33 and VAMP721, and this competition is predicated by SEC11 association with the N terminus of SYP121. These and additional data are consistent with a model in which SYP121-mediated vesicle fusion is regulated by an unusual “handshaking” mechanism of concerted SEC11 debinding and rebinding. They also implicate one or more factors that alter or disrupt SEC11 association with the SYP121 N terminus as an early step initiating SNARE complex formation
    corecore