200 research outputs found

    Interfacial Studies in Semiconductor Heterostructures by X-Ray Diffraction Techniques

    Get PDF
    X-ray radiation is a non-destructive probe well suited to assess structural perfection of semiconductor material. Three techniques are used to study the interfacial roughness, period fluctuations and annealing-induced interdiffusion in various superlattice structures. Reflectivity of long period Si/Si1-xGex multiple quantum wells reveals an asymmetry oriented along the direction of miscut in the interface roughness with the Si1-xGex to Si interfaces being about twice as rough (0.5 versus 0.3 nm) as the Si to Si1-xGex interfaces. For Si-Si0.65Ge0.35 multiple quantum wells, diffuse scattering is minimal for a growth temperature of 550°C and increases substantially at very low (250°C) or high (750°C) growth temperatures. In (SimGen)p short period superlattices, the X-ray reflectivity data are consistent with interfacial mixing over about two monolayers and thickness fluctuations of about 5% vertically in the structures. For superlattices grown on vicinal surfaces, the roughness spectrum is correlated with the surface miscut orientation. Double-crystal X-ray diffraction using symmetrical and asymmetrical reflections has been used to study epitaxial lattice distortion and strain relaxation in InGaAs/GaAs heterostructures grown on (100) on-orientation and 2° off (100) GaAs surfaces. It is shown that thick InGaAs films retain an appreciable fraction of their initial strain and that their crystal lattice is triclinically distorted. The magnitude of the deformation is larger when growth is carried out on a vicinal surface

    Influence of Annealing on the Interface Structure and Strain Relief in Si/Ge Heterostructures on (100) Si

    Get PDF
    Research work on the general problem of the nature and thermal stability of the Si/Ge semiconductor interface is reviewed. We report on our recent studies of the interface structure in [(Si)m(Ge)n]p superlattices and (Ge)n layers buried in Si as revealed by Raman scattering, extended X-ray absorption fine structure, and X-ray techniques. Strain relaxation and interdiffusion in the superlattices caused by annealing have been investigated, and it is found that considerable strain-enhanced intermixing together with partial relaxation of Ge-Ge bonds occurs even for very short anneal times at 700°C. Further annealing leads to diffusion at a much slower rate and to the eventual formation of an alloy layer. The Ge-Ge bond lengths in as-grown samples are that expected for a fully strained Ge layer. Similar studies of the (Ge)n layers reveal that two-dimensional pseudomorphic growth proceeds up to n = 5, probably mediated by a Si-Ge interface interdiffusion over one or two monolayers of approximately 20%. A n = 12 layer gave evidence of strain relaxation by the introduction of dislocations and clustering. Interdiffusion proceeds rapidly on annealing at 750°C

    Sobre a Faixa de Pedestres

    Get PDF
    The interference colors resulting from thin films of Al 2O 3 deposited by atomic layer deposition (ALD) on silicon have been rigorously analyzed using a recently developed robotic gonioreflectometer. A series of eleven increasingly thick films was deposited, up to 1613 Ã…, and their reflectance values obtained for the visible spectrum. A comparison of these values with the predictions of computer simulations employing Fresnel equations has revealed that while there was generally good agreement between predicted and measured spectra, there are some spectral regions that exhibit large deviations from predicted reflectances, typically at near-normal measurement angles and shorter wavelengths. The effect of these discrepancies on color appearance was investigated in the CIE L*a*b* color space for the daylight illuminant D65. Large iridescence is both predicted and measured for most film thicknesses. Chroma and hue differences as large as 20 CIELAB units between the predicted and the measured color centers were obtained. Simulation also predicts larger iridescence than what is actually measured. A likely cause for the observed discrepancies is that the dielectric constants of the ALD films deviate from the literature values for the bulk material

    Linkage of whole genome sequencing and administrative health data in autism: A proof of concept study

    Get PDF
    Whether genetic testing in autism can help understand longitudinal health outcomes and health service needs is unclear. The objective of this study was to determine whether carrying an autism-associated rare genetic variant is associated with differences in health system utilization by autistic children and youth. This retrospective cohort study examined 415 autistic children/youth who underwent genome sequencing and data collection through a translational neuroscience program (Province of Ontario Neurodevelopmental Disorders Network). Participant data were linked to provincial health administrative databases to identify historical health service utilization, health care costs, and complex chronic medical conditions during a 3-year period. Health administrative data were compared between participants with and without a rare genetic variant in at least 1 of 74 genes associated with autism. Participants with a rare variant impacting an autism-associated gene (n = 83, 20%) were less likely to have received psychiatric care (at least one psychiatrist visit: 19.3% vs. 34.3%, p = 0.01; outpatient mental health visit: 66% vs. 77%, p = 0.04). Health care costs were similar between groups (median: 5589vs.5589 vs. 4938, p = 0.4) and genetic status was not associated with odds of being a high-cost participant (top 20%) in this cohort. There were no differences in the proportion with complex chronic medical conditions between those with and without an autism-associated genetic variant. Our study highlights the feasibility and potential value of genomic and health system data linkage to understand health service needs, disparities, and health trajectories in individuals with neurodevelopmental conditions

    Rapid weight gain and weight differential predict competitive success in 2100 professional combat-sport athletes.

    Get PDF
    Purpose: Combat-sport athletes commonly undergo rapid weight loss prior to prebout weigh-in and subsequently rapid weight gain (RWG) prior to competition. This investigation aimed to evaluate the effect of RWG and weight differential (WD) between opponents on competitive success. Methods: A retrospective cohort study was performed using data from professional mixed martial arts (MMA) and boxing events held between 2015 and 2019. The primary outcome was RWG (relative and absolute) between weigh-in and competition stratified by bout winners and losers. Binary logistic regression was used to explore the relationships among bout outcome, RWG, and WD between competitors on the day of their bout. Results: Among 708 MMA athletes included, winners regained more relative body mass (8.7% [3.7%] vs 7.9% [3.8%], P < .01) than losers. In 1392 included male boxers, winners regained significantly more relative body mass (8.0% [3.0%] vs 6.9% [3.2%], P < .01) than losers. Each percentage body mass increase resulted in a 7% increased likelihood of victory in MMA and a 13% increase in boxing. The relationship between RWG and competitive success remained significant in regional and male international MMA athletes, as well as boxers. WD predicted victory in international mixed martial artists and boxers. WD predicted victory by knockout or technical knockout in international MMA athletes and regional boxers. Conclusion: This analysis of combat-sport athletes indicates that RWG and WD influence competitive success. These findings raise fair-play and safety concerns in these popular sports and may help guide risk-mitigating regulation strategies
    • …
    corecore