684 research outputs found
Pulsations in Hydrogen Burning Low Mass Helium White Dwarfs
Helium core white dwarfs (WDs) with mass M <~ 0.20 Msun undergo several Gyrs
of stable hydrogen burning as they evolve. We show that in a certain range of
WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations
similar to their passively cooling, more massive carbon/oxygen core
counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes
on helium cores yield g-mode periods and period spacings longer than the
canonical ZZ Cetis by nearly a factor of 2. We show that core composition and
structure can be probed using seismology since the g-mode eigenfunctions
predominantly reside in the helium core. Though we have not carried out a fully
nonadiabatic stability analysis, the scaling of the thermal time in the
convective zone with surface gravity highlights several low-mass helium WDs
that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753,
and the companion to PSR J1012+5307. Seismological studies of these He core WDs
may prove especially fruitful, as their luminosity is related (via stable
hydrogen burning) to the hydrogen envelope mass, which eliminates one model
parameter.Comment: 6 pages, 3 figures. Published ApJ versio
Can Parity Violation in Neutrino Transport Lead to Pulsar Kicks?
In magnetized proto-neutron stars, neutrino cross sections depend
asymmetrically on the neutrino momenta due to parity violation. However, these
asymmetric opacities do not induce any asymmetric flux in the bulk interior of
the star where neutrinos are nearly in thermal equilibrium. Consequently,
parity violation in neutrino absorption and scattering can only give rise to
asymmetric neutrino flux above the neutrino-matter decoupling layer. The kick
velocity is substantially reduced from previous estimates, requiring a dipole
field ~G to get of order a few hundred km~s.Comment: REVTEX, 4 pages, no figures. Submitted to Phys. Rev. Letter
Cooling of young stars growing by disk accretion
In the initial formation stages young stars must acquire a significant
fraction of their mass by accretion from a circumstellar disk that forms in the
center of a collapsing protostellar cloud. Throughout this period mass
accretion rates through the disk can reach 10^{-6}-10^{-5} M_Sun/yr leading to
substantial energy release in the vicinity of stellar surface. We study the
impact of irradiation of the stellar surface produced by the hot inner disk on
properties of accreting fully convective low-mass stars, and also look at
objects such as young brown dwarfs and giant planets. At high accretion rates
irradiation raises the surface temperature of the equatorial region above the
photospheric temperature T_0 that a star would have in the absence of
accretion. The high-latitude (polar) parts of the stellar surface, where disk
irradiation is weak, preserve their temperature at the level of T_0. In
strongly irradiated regions an almost isothermal outer radiative zone forms on
top of the fully convective interior, leading to the suppression of the local
internal cooling flux derived from stellar contraction (similar suppression
occurs in irradiated ``hot Jupiters''). Properties of this radiative zone
likely determine the amount of thermal energy that gets advected into the
convective interior of the star. Total intrinsic luminosity integrated over the
whole stellar surface is reduced compared to the non-accreting case, by up to a
factor of several in some systems (young brown dwarfs, stars in quasar disks,
forming giants planets), potentially leading to the retardation of stellar
contraction. Stars and brown dwarfs irradiated by their disks tend to lose
energy predominantly through their cool polar regions while young giant planets
accreting through the disk cool through their whole surface.Comment: 14 pages, 6 figures, submitted to Ap
Constraints on the mass and abundance of black holes in the Galactic halo: the high mass limit
We establish constraints on the mass and abundance of black holes in the
Galactic halo by determining their impact on globular clusters which are
conventionally considered to be little evolved. Using detailed Monte Carlo
simulations and simple analytic estimates, we conclude that, at Galactocentric
radius R~8 kpc, black holes with masses M_bh >~(1-3) x 10^6 M_sun can comprise
no more than a fraction f_bh ~ 0.025-0.05 of the total halo density. This
constraint significantly improves those based on disk heating and dynamical
friction arguments as well as current lensing results. At smaller radius, the
constraint on f_bh strengthens, while, at larger radius, an increased fraction
of black holes is allowed.Comment: 13 pages, 10 figures, revised version, in press, Monthly Notice
Improving animal welfare using continuous nalbuphine infusion in a long-term rat model of sepsis
Abstract Background Sepsis research relies on animal models to investigate the mechanisms of the dysregulated host response to infection. Animal welfare concerns request the use of potent analgesics for the Refinement of existing sepsis models, according to the 3Rs principle. Nevertheless, adequate analgesia is often missing, partly because the effects of analgesics in this particular condition are unknown. We evaluated the use of nalbuphine, an opioid with kappa agonistic and mu antagonistic effects, in rats with and without experimental sepsis. Methods Male Wistar rats were anesthetized with isoflurane and instrumented with a venous line for drug administration. Arterial cannulation allowed for blood pressure measurements and blood sampling in short-term experiments of non-septic animals. Nalbuphine (or placebo) was administered intravenously at a dose of 1 mg/kg/h. Long-term (48 h) experiments in awake septic animals included repetitive clinical scoring with the Rat Grimace Scale and continuous heart rate monitoring by telemetry. Sepsis was induced by intraperitoneal injection of faecal slurry. Nalbuphine plasma levels were measured by liquid chromatography—high resolution mass spectrometry. Results In anesthetized healthy animals, nalbuphine led to a significant reduction of respiratory rate, heart rate, and mean arterial pressure during short-term experiments. In awake septic animals, a continuous nalbuphine infusion did not affect heart rate but significantly improved the values of the Rat Grimace Scale. Nalbuphine plasma concentrations remained stable between 4 and 24 h of continuous infusion in septic rats. Conclusions In anaesthetised rats, nalbuphine depresses respiratory rate, heart rate, and blood pressure. In awake animals, nalbuphine analgesia improves animal welfare during sepsis
Neutron Stars in Teleparallel Gravity
In this paper we deal with neutron stars, which are described by a perfect
fluid model, in the context of the teleparallel equivalent of general
relativity. We use numerical simulations to find the relationship between the
angular momentum of the field and the angular momentum of the source. Such a
relation was established for each stable star reached by the numerical
simulation once the code is fed with an equation of state, the central energy
density and the ratio between polar and equatorial radii. We also find a regime
where linear relation between gravitational angular momentum and moment of
inertia (as well as angular velocity of the fluid) is valid. We give the
spatial distribution of the gravitational energy and show that it has a linear
dependence with the squared angular velocity of the source.Comment: 19 pages, 14 figures. arXiv admin note: text overlap with
arXiv:1206.331
Stellar Pollution in the Solar Neighborhood
We study spectroscopically determined iron abundances of 642 solar-type stars
to search for the signature of accreted iron-rich material. We find that the
metallicity [Fe/H] of a subset of 466 main sequence stars, when plotted as a
function of stellar mass, mimics the pattern seen in lithium abundances in open
clusters. Using Monte Carlo models we find that, on average, these stars have
accreted about 0.4 Earth masses of iron while on the main sequence. A much
smaller sample of 19 stars in the Hertzsprung gap, which are slightly evolved
and whose convection zones are significantly more massive, have lower average
[Fe/H], and their metallicity shows no clear variation with stellar mass. These
findings suggest that terrestrial-type material is common around solar type
stars.Comment: 33 pages, 11 figures. Submitted to Ap
Neutrino-Nucleon Interactions in Magnetized Neutron-Star Matter: The Effects of Parity Violation
We study neutrino-nucleon scattering and absorption in a dense, magnetized
nuclear medium. These are the most important sources of neutrino opacity
governing the cooling of a proto-neutron star in the first tens of seconds
after its formation. Because the weak interaction is parity violating, the
absorption and scattering cross-sections depend asymmetrically on the
directions of the neutrino momenta with respect to the magnetic field. We
develop the moment formalism of neutrino transport in the presence of such
asymmetric opacities and derive explicit expressions for the neutrino flux and
other angular moments of the Boltzmann transport equation. For a given neutrino
species, there is a drift flux of neutrinos along the magnetic field in
addition to the usual diffusive flux. This drift flux depends on the deviation
of the neutrino distribution function from thermal equilibrium. Hence, despite
the fact that the neutrino cross-sections are asymmetric throughout the star,
asymmetric neutrino flux can be generated only in the outer region of the
proto-neutron star where the neutrino distribution deviates significantly from
thermal equilibrium. In addition to the asymmetric absorption opacity arising
from nucleon polarization, we find the contribution of the electron (or
positron) ground state Landau level. For neutrinos of energy less than a few
times the temperature, this is the dominant source of asymmetric opacity.
Lastly, we discuss the implication of our result to the origin of pulsar kicks:
in order to generate kick velocity of a few hundred km/s from asymmetric
neutrino emission using the parity violation effect, the proto-neutron star
must have a dipole magnetic field of at least G.Comment: 35 pages, no figures, submitted to Phys.Rev.
Coalescing Binary Neutron Stars
Coalescing compact binaries with neutron star or black hole components
provide the most promising sources of gravitational radiation for detection by
the LIGO/VIRGO/GEO/TAMA laser interferometers now under construction. This fact
has motivated several different theoretical studies of the inspiral and
hydrodynamic merging of compact binaries. Analytic analyses of the inspiral
waveforms have been performed in the Post-Newtonian approximation. Analytic and
numerical treatments of the coalescence waveforms from binary neutron stars
have been performed using Newtonian hydrodynamics and the quadrupole radiation
approximation. Numerical simulations of coalescing black hole and neutron star
binaries are also underway in full general relativity. Recent results from each
of these approaches will be described and their virtues and limitations
summarized.Comment: Invited Topical Review paper to appear in Classical and Quantum
Gravity, 35 pages, including 5 figure
- …
