260 research outputs found

    Refining the Proof of Planar Equivalence

    Full text link
    We outline a full non-perturbative proof of planar (large-N) equivalence between bosonic correlators in a theory with Majorana fermions in the adjoint representation and one with Dirac fermions in the two-index (anti)symmetric representation. In a particular case (one flavor), this reduces to our previous result - planar equivalence between super-Yang--Mills theory and a non-supersymmetric ``orientifold field theory.'' The latter theory becomes one-flavor massless QCD at N=3.Comment: 15 pages, Latex. 6 figures. v2: Comments and refs. added. v3: ref.[9] corrected. To appear in Phys.Rev.

    Non-Perturbative Planar Equivalence and the Absence of Closed String Tachyons

    Get PDF
    We consider 'orbifold' and 'orientifold' field theories from the dual closed string theory side. We argue that a necessary condition for planar equivalence to hold is the absence of a closed string tachyonic mode in the dual non-supersymmetric string. We analyze several gauge theories on R3xS1. In the specific case of U(N) theories with symmetric/anti-symmetric fermions ('orientifold field theories') the relevant closed string theory is tachyon-free at large compactification radius (due to winding modes), but it develops a tachyonic mode below a critical radius. Our finding is with agreement with field theory expectations of a phase transition from a C-parity violating phase to a C-parity preserving phase as the compactification radius increases. In the case of U(N)xU(N) theories with bi-fundamental matter ('orbifold field theories') a tachyon is always present in the string spectrum, at any compactification radius. We conclude that on R4 planar equivalence holds for 'orientfiold field theories', but fails for 'orbifold field theories' daughters of N=4 SYM and suggest the same for daughters of N=1 SYM. We also discuss examples of SO/Sp gauge theories with symmetric/anti-symmetric fermions. In this case planar equivalence holds at any compactification radius -in agreement with the absence of tachyons in the string dual.Comment: 14 pages, Latex. 3 eps figures. v2: ref. added. v3: clarifying sentences added in the abstract and at the end of section 4. version accepted to JHE

    Domain Walls and Metastable Vacua in Hot Orientifold Field Theories

    Get PDF
    We consider "Orientifold field theories", namely SU(N) gauge theories with Dirac fermions in the two-index representation at high temperature. When N is even these theories exhibit a spontaneously broken Z2 centre symmetry. We study aspects of the domain wall that interpolates between the two vacua of the theory. In particular we calculate its tension to two-loop order. We compare its tension to the corresponding domain wall in a SU(N) gauge theory with adjoint fermions and find an agreement at large-N, as expected from planar equivalence between the two theories. Moreover, we provide a non-perturbative proof for the coincidence of the tensions at large-N. We also discuss the vacuum structure of the theory when the fermion is given a large mass and argue that there exist N-2 metastable vacua. We calculate the lifetime of those vacua in the thin wall approximation.Comment: 29 pages, 4 figures. v2: minor changes in the introduction section. to appear in JHE

    Baryons and baryonic matter in the large Nc and heavy quark limits

    Full text link
    This paper explores properties of baryons and finite density baryonic matter in an artificial world in which Nc, the number of colors, is large and the quarks of all species are degenerate and much larger than {\Lambda}_QCD. It has long been known that in large Nc QCD, baryons composed entirely of heavy quarks are accurately described in the mean-field approximation. However, the detailed properties of baryons in the combined large Nc and heavy quark limits have not been fully explored. Here some basic properties of baryons are computed using a variational approach. At leading order in both the large Nc and heavy quark expansions the baryon mass is computed explicitly as is the baryon form factor. Baryonic matter, the analog of nuclear matter in this artificial world, should also be well described in the mean-field approximation. In the special case where all baryons have an identical spin flavor structure, it is shown that in the formal heavy quark and large Nc limit interactions between baryons are strictly repulsive at low densities. The energy per baryon is computed in this limit and found to be exponentially small. It is shown that when the restriction to baryons with an identical spin-flavor structure is dropped, a phase of baryonic matter exists with a density of 2Nf times that for the restricted case but with the same energy (where Nf is the number of degenerate flavors). It is shown that this phase is at least metastable.Comment: 19 page

    Strings Inside Walls in N=1 Super Yang-Mills

    Full text link
    We conjecture the existence of strings bounded inside walls in SU(n)(n) N=1\N=1 Super Yang-Mills theory. These strings carry Z[k,n]\Z_{[k,n]} quantum number, where [k,n][k,n] is the greatest common divisor between kk, the charge of the wall, and nn. We provide field-theoretical arguments and string-theoretical evidences, both from MQCD and from gauge-gravity correspondence. We interpret this result from the point of view of the low-energy effective action living on the kk-wall.Comment: 25 pp. Major changes. In particular, following the recent work arXiv:0807.1908 we have been able to give a field theoretical proof of the statement. We have also corrected an important erroneous interpretation in the previous version regarding the 2+1 effective action; Typo

    QCD and the Hagedorn spectrum

    Full text link
    It is shown that large Nc QCD must have a Hagedorn spectrum (i.e. a spectrum of hadron which grows exponentially with the hadrons mass) provided that certain technical assumptions concerning the applicability of perturbation theory to a certain class of correlation functions apply. The basic argument exploits the interplay of confinement and asymptotic freedom.Comment: 16 pages, 1 figure. This version is expanded from the original version. Additional discussion has been added to clarify the central issues. Typos have been fixed. The appendix has been updated and greatly expanded

    Hamiltonian formulation of nonAbelian noncommutative gauge theories

    Get PDF
    We implement the Hamiltonian treatment of a nonAbelian noncommutative gauge theory, considering with some detail the algebraic structure of the noncommutative symmetry group. The first class constraints and Hamiltonian are obtained and their algebra derived, as well as the form of the gauge invariance they impose on the first order action.Comment: enlarged version, 7 pages, RevTe

    Non-Commutative Gauge Theories and the Cosmological Constant

    Get PDF
    We discuss the issue of the cosmological constant in non-commutative non-supersymmetric gauge theories. In particular, in orbifold field theories non-commutativity acts as a UV cut-off. We suggest that in these theories quantum corrections give rise to a vacuum energy \rho, that is controlled by the non-commutativity parameter \theta, \rho ~ 1/theta^2 (only a soft logarithmic dependence on the Planck scale survives). We demonstrate our claim in a two-loop computation in field theory and by certain higher loop examples. Based on general expressions from string theory, we suggest that the vacuum energy is controlled by non-commutativity to all orders in perturbation theory.Comment: 11 pages, RevTex. 4 eps figures. v2: Typos corrected. To appear in Phys.Rev.

    Holographic U(1)_A and String Creation

    Full text link
    We analyze the resolution of the U(1)_A problem in the Sakai-Sugimoto holographic dual of large N_c QCD at finite temperature. It has been shown that in the confining phase the axial symmetry is broken at order 1/N_c, in agreement with the ideas of Witten and Veneziano. We show that in the deconfined phase the axial symmetry remains unbroken to all orders in 1/N_c. In this case the breaking is due to instantons which are described by spacelike D0-branes, in agreement with 'tHooft's resolution. The holographic dual of the symmetry breaking fermion condensate is a state of spacelike strings between the D0-brane and the flavor D8-branes, which result from a spacelike version of the string creation effect. In the intermediate phase of deconfinement with broken chiral symmetry the instanton gas approximation is possibly regulated in the IR, which would imply an eta' mass-squared of order exp(-N_c).Comment: 18 pages, 19 figures, minor change
    • 

    corecore