3,023 research outputs found

    Study of excited nucleon states at EBAC: status and plans

    Full text link
    We present an overview of a research program for the excited nucleon states in Excited Baryon Analysis Center (EBAC) at Jefferson Lab. Current status of our analysis of the meson production reactions based on the unitary dynamical coupled-channels model is summarized, and the N* pole positions extracted from the constructed scattering amplitudes are presented. Our plans for future developments are also discussed.Comment: Plenary talk given at Workshop on the Physics of Excited Nucleon -- NSTAR2009, Beijing, April 19-22, 2009. 8 pages, 8 figure

    Twist Deformations of the Supersymmetric Quantum Mechanics

    Get PDF
    The N-extended Supersymmetric Quantum Mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its Universal Enveloping Superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist-deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed.Comment: 18 pages; two references adde

    Live Hot, Die Young: Transmission Distortion in Recombination Hotspots

    Get PDF
    There is strong evidence that hotspots of meiotic recombination in humans are transient features of the genome. For example, hotspot locations are not shared between human and chimpanzee. Biased gene conversion in favor of alleles that locally disrupt hotspots is a possible explanation of the short lifespan of hotspots. We investigate the implications of such a bias on human hotspots and their evolution. Our results demonstrate that gene conversion bias is a sufficiently strong force to produce the observed lack of sharing of intense hotspots between species, although sharing may be much more common for weaker hotspots. We investigate models of how hotspots arise, and find that only models in which hotspot alleles do not initially experience drive are consistent with observations of rather hot hotspots in the human genome. Mutations acting against drive cannot successfully introduce such hotspots into the population, even if there is direct selection for higher recombination rates, such as to ensure correct segregation during meiosis. We explore the impact of hotspot alleles on patterns of haplotype variation, and show that such alleles mask their presence in population genetic data, making them difficult to detect

    Cosmological constraints on neutrino plus axion hot dark matter: Update after WMAP-5

    Full text link
    We update our previous constraints on two-component hot dark matter (axions and neutrinos), including the recent WMAP 5-year data release. Marginalising over sum m_nu provides m_a < 1.02 eV (95% C.L.) for the axion mass. In the absence of axions we find sum m_nu < 0.63 eV (95% C.L.).Comment: 4 pages, 1 figure, uses iopart.cls; v2 matches published versio

    Flat Tree-level Inflationary Potentials in Light of CMB and LSS Data

    Full text link
    We use cosmic microwave background and large scale structure data to test a broad and physically well-motivated class of inflationary models: those with flat tree-level potentials (typical in supersymmetry). The non-trivial features of the potential arise from radiative corrections which give a simple logarithmic dependence on the inflaton field, making the models very predictive. We also consider a modified scenario with new physics beyond a certain high-energy cut-off showing up as non-renormalizable operators (NRO) in the inflaton field. We find that both kinds of models fit remarkably well CMB and LSS data, with very few free parameters. Besides, a large part of these models naturally predict a reasonable number of e-folds. A robust feature of these scenarios is the smallness of tensor perturbations (r < 10^{-3}). The NRO case can give a sizeable running of the spectral index while achieving a sufficient number of e-folds. We use Bayesian model comparison tools to assess the relative performance of the models. We believe that these scenarios can be considered as a standard physical class of inflationary models, on a similar footing with monomial potentials.Comment: 42 LaTeX pages, 8 figure

    Aerodynamics of aero-engine installation

    Get PDF
    This paper describes current progress in the development of methods to assess aero-engine airframe installation effects. The aerodynamic characteristics of isolated intakes, a typical transonic transport aircraft as well as a combination of a through-flow nacelle and aircraft configuration have been evaluated. The validation task for an isolated engine nacelle is carried out with concern for the accuracy in the assessment of intake performance descriptors such as mass flow capture ratio and drag rise Mach number. The necessary mesh and modelling requirements to simulate the nacelle aerodynamics are determined. Furthermore, the validation of the numerical model for the aircraft is performed as an extension of work that has been carried out under previous drag prediction research programmes. The validation of the aircraft model has been extended to include the geometry with through flow nacelles. Finally, the assessment of the mutual impact of the through flow nacelle and aircraft aerodynamics was performed. The drag and lift coefficient breakdown has been presented in order to identify the component sources of the drag associated with the engine installation. The paper concludes with an assessment of installation drag for through-flow nacelles and the determination of aerodynamic interference between the nacelle and the aircraft
    corecore