172 research outputs found

    Zero-variance principle for Monte Carlo algorithms

    Full text link
    We present a general approach to greatly increase at little cost the efficiency of Monte Carlo algorithms. To each observable to be computed we associate a renormalized observable (improved estimator) having the same average but a different variance. By writing down the zero-variance condition a fundamental equation determining the optimal choice for the renormalized observable is derived (zero-variance principle for each observable separately). We show, with several examples including classical and quantum Monte Carlo calculations, that the method can be very powerful.Comment: 9 pages, Latex, to appear in Phys. Rev. Let

    Constraints on massive gravity theory from big bang nucleosynthesis

    Full text link
    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also discussed in the framework of the PAMELA experiment.Comment: 5 page

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms.This work was supported as a Science Innovation Project by the Department of Agriculture, Water and the Environment’s Science Innovation Program funding 2021–22 (project team: A.J.M., L.J.C., D.M.B., C.K.K., J.S.S. and L.S.). Support was also provided (to J.D.S, E.L.J., S.A.R., J.S.S., M.I.S., J.M.S., N.G.W.) from Australian Research Council SRIEAS grant SR200100005. P.C. and K.A.H. are supported by NERC core funding to the BAS Biodiversity, Evolution and Adaptation Team and Environment Office, respectively. L.R.P. and M.G. are supported by Biodiversa ASICS funding

    Imaging crustal structure in South-Central Costa Rica with Receiver Functions

    Get PDF
    An array of broadband seismometers transecting the Talamanca Range in southern Costa Rica was operated from 2005 until 2007. In combination with data from a short‐period network near Quepos in central Costa Rica, this data is analyzed by the receiver function method to image the crustal structure in south‐central Costa Rica. Two strong positive signals are seen in the migrated images, interpreted as the Moho (at around 35 km depth) and an intra‐crustal discontinuity (15 km depth). A relatively flat crustal and Moho interface underneath the north‐east flank of the Talamanca Range can be followed for a lateral distance of about 50 km parallel to the trench, with only slight changes in the overall geometry. Closer to the coast, the topography of the discontinuities shows several features, most notably a deeper Moho underneath the Talamanca Mountain Range and volcanic arc. Under the highest part of the mountain ranges, the Moho reaches a depth of about 50 km, which indicates that the mountain ranges are approximately isostatically compensated. Local deviations from the crustal thickness expected for isostatic equilibrium occur under the active volcanic arc and in south Costa Rica. In the transition region between the active volcanic arc and the Talamanca Range, both the Moho and intracrustal discontinuity appear distorted, possibly related to the southern edge of the active volcanic zone and deformation within the southern part of the Central Costa Rica Deformed Belt. Near the volcanoes Irazu and Turrialba, a shallow converter occurs, correlating with a low‐velocity, low‐density body seen in tomography and gravimetry. Applying a grid search for the crustal interface depth and vp/vs ratio cannot constrain vp/vs values well, but points to generally low values (<1.7) in the upper crust. This is consistent with quartz‐rich rocks forming the mountain range

    Patient satisfaction and side effects in primary care: An observational study comparing homeopathy and conventional medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study is part of a nationwide evaluation of complementary medicine in Switzerland (Programme Evaluation of Complementary Medicine PEK) and was funded by the Swiss Federal Office of Public Health. The main objective of this study is to investigate patient satisfaction and perception of side effects in homeopathy compared with conventional care in a primary care setting.</p> <p>Methods</p> <p>We examined data from two cross-sectional studies conducted in 2002–2003. The first study was a physician questionnaire assessing structural characteristics of practices. The second study was conducted on four given days during a 12-month period in 2002/2003 using a physician and patient questionnaire at consultation and a patient questionnaire mailed to the patient one month later (including Europep questionnaire).</p> <p>The participating physicians were all trained and licensed in conventional medicine. An additional qualification was required for medical doctors providing homeopathy (membership in the Swiss association of homeopathic physicians SVHA).</p> <p>Results</p> <p>A total of 6778 adult patients received the questionnaire and 3126 responded (46.1%). Statistically significant differences were found with respect to health status (higher percentage of chronic and severe conditions in the homeopathic group), perception of side effects (higher percentage of reported side effects in the conventional group) and patient satisfaction (higher percentage of satisfied patients in the homeopathic group).</p> <p>Conclusion</p> <p>Overall patient satisfaction was significantly higher in homeopathic than in conventional care. Homeopathic treatments were perceived as a low-risk therapy with two to three times fewer side effects than conventional care</p
    • 

    corecore