2,030 research outputs found

    The Konya earthquakes of 10–11 September 2009 and soil conditions in Konya, Central Anatolia, Turkey

    Get PDF
    Earthquakes registering magnitudes <i>M</i><sub>d</sub> = 4.5 and 4.7 struck the city of Konya, Central Anatolia, on 10–11 September 2009, causing very slight damages. The earthquake epicenters were located at the east of Sille District along the Konya Fault Zone, a dip-slip fault. The nature and seismicity of the fault zone indicates that it is capable of producing earthquakes of moderate magnitudes. This paper summarizes the geologic data along the fault zone and documents groundwater conditions and analyzes borehole and geotechnical data of the Konya city. The residential area of the city covers an area of approximately 1150 square kilometers and consists almost entirely of flat land except for a small part of rugged land in the southwestern corner. Groundwater and geotechnical data were collected and analyzed to evaluate the liquefaction potential of deposits under the Konya city. This preliminary investigation indicates that areas for liquefaction are generally limited to the eastern and east central parts of the city

    The Spermatophore in Glossina morsitans morsitans: Insights into Male Contributions to Reproduction.

    Get PDF
    Male Seminal Fluid Proteins (SFPs) transferred during copulation modulate female reproductive physiology and behavior, impacting sperm storage/use, ovulation, oviposition, and remating receptivity. These capabilities make them ideal targets for developing novel methods of insect disease vector control. Little is known about the nature of SFPs in the viviparous tsetse flies (Diptera: Glossinidae), vectors of Human and Animal African trypanosomiasis. In tsetse, male ejaculate is assembled into a capsule-like spermatophore structure visible post-copulation in the female uterus. We applied high-throughput approaches to uncover the composition of the spermatophore in Glossina morsitans morsitans. We found that both male accessory glands and testes contribute to its formation. The male accessory glands produce a small number of abundant novel proteins with yet unknown functions, in addition to enzyme inhibitors and peptidase regulators. The testes contribute sperm in addition to a diverse array of less abundant proteins associated with binding, oxidoreductase/transferase activities, cytoskeletal and lipid/carbohydrate transporter functions. Proteins encoded by female-biased genes are also found in the spermatophore. About half of the proteins display sequence conservation relative to other Diptera, and low similarity to SFPs from other studied species, possibly reflecting both their fast evolutionary pace and the divergent nature of tsetse's viviparous biology

    Antenatal screening and its possible meaning from unborn baby's perspective

    Get PDF
    In recent decades antenatal screening has become one of the most routine procedure of pregnancy-follow up and the subject of hot debate in bioethics circles. In this paper the rationale behind doing antenatal screening and the actual and potential problems that it may cause will be discussed. The paper will examine the issue from the point of wiew of parents, health care professionals and, most importantly, the child-to-be. It will show how unthoughtfully antenatal screening is performed and how pregnancy is treated almost as a disease just since the emergence of antenatal screening. Genetic screening and ethical problems caused by the procedure will also be addressed and I will suggest that screening is more to do with the interests of others rather than those of the child-to be

    Evaluation of the use high resolution satellite Imagery to map slope instability in a tropical environment: St. Thomas, Jamaica

    Get PDF
    Landslides are a major natural hazard in Jamaica, and have resulted in loss of life, major economic losses, social disruption and damage to public and private properties. There is a need to delineate areas that are prone to slope instability in order to mitigate their effects. The first and most important stage for the creation of a landslide risk maps is the collection of accurate landslide data in a timely manner. However the type of terrain makes landslide mapping particularly difficult. Aerial Photographs have proven to be an effective way of mapping landslides but acquiring new photographs to map recent landslides is very expensive. High resolution satellite imagery were evaluated for their effectiveness in delineating landslides. The landslides on a whole had no distinctive spectral property; hence no one classification technique could be used to identify them. This research developed integrative methods utilising a combination of: edge enhancement to delineate the scarps area; Wetness Index to identify back titling blocks and debris flow lobes where moisture is higher; shape classification (to distinguish from e.g. ground cleared for agriculture); and slope curvature to map scarps. The information from the image classification was combined in a GIS and automated to determine the probability of the presence and or absence of a landslides. Data derived was validated against detailed field mapping at a scale of 1:5000. For more recent landslides, the modelling proved to be effective, accurately identifying 91% of the landslide both in terms of the location and extent. For the older landslides Pre 2000) the mapping was less effective, with misclassification as high as 24% particularly for smaller landslides. However, the use of these imagery does have great potential as they prove useful for mapping new landslides quickly and efficiently after landslide disaster and are much cheaper and quicker to acquire.University of Chester, KT research grant, and as an outcome of statutory research no. 528-0302-0828 Faculty of Geodesy and Land Management, Institute of Geodesy, bUniversity of Warmia and Mazury in Olszty

    Enhanced radiation damage tolerance of amorphous interphase and grain boundary complexions in Cu-Ta

    Full text link
    Amorphous interfacial complexions are particularly resistant to radiation damage and have been primarily studied in alloys with good glass-forming ability, yet recent reports suggest that these features can form even in immiscible alloys such as Cu-Ta under irradiation. In this study, the mechanisms of damage production and annihilation due to primary knock-on atom collisions are investigated for amorphous interphase and grain boundaries in a Cu-Ta alloy using atomistic simulations. Amorphous complexions, in particular amorphous interphase complexions that separate Cu and Ta grains, result in less residual defect damage than their ordered counterparts. Stemming from the nanophase chemical separation in this alloy, the amorphous complexions exhibit a highly heterogeneous distribution of atomic excess volume, as compared to a good glass former like Cu-Zr. Complexion thickness, a tunable structural descriptor, plays a vital role in damage resistance. Thicker interfacial films are more damage-tolerant because they alter the defect production rate due to differences in intrinsic displacement threshold energies during the collision cascade. Overall, the findings of this work highlight the importance of interfacial engineering in enhancing the properties of materials operating in radiation-prone environments and the promise of amorphous complexions as particularly radiation damage-tolerant microstructural features

    Further analysis of burkholderia pseudomallei mf2 and identification of putative dehalogenase gene by pcr

    Get PDF
    Halogenated organic compounds are extensively and widely used as pesticides, herbicides, and antibiotics that contribute to the pollution. This research was aimed to further analyze and characterize a bacterium that has the ability to utilize 2,2-dichloropropionic acid (2,2-DCP) as a model to study dehalogenase enzyme production. Microscopic observation, biochemical tests and PCR technique were carried out in order to characterize the isolated bacterium. Strain MF2 showed its ability to grow on 10 mM 2,2-DCP liquid minimal medium with doubling time of 13 h with maximum chloride ion released of 19.8 μmolCl–/mL. The 16S rDNA analysis suggested that strain MF2 belongs to the genus Burkholderia. This was supported by the microscopic observation and biochemical tests. Dehalogenase gene was observed when using only primers dehIfor1 and dehIrev2 derived from group I deh PCR primer sequences, whereas no amplification using dhlB-314-forward and dhlB-637-reverse (group II dehalogenase) and haloacetate dehalogenase (H2-1157-forward and H2-1662-reverse) PCR primer sequences. The results suggested that, possibly, dehalogenase from MF2 was related to group I deh. In conclusion, strain MF2 showed the ability to utilize 2,2-DCP as sole source of carbon and energy. Further analysis revealed the MF2 strain consisted of dehalogenase gene that could be used for degradation of man-made halogenated compounds present in the environment. Using existing dehalogenase PCR primers, it was possible to amplify the dehalogenase genes sequence

    Inequality and Procedural Justice in Social Dilemmas

    Get PDF
    This study investigates the influence of resource inequality and the fairness of the allocation procedure of unequal resources on cooperative behavior in social dilemmas. We propose a simple formal behavioral model that incorporates conflicting selfish and social motivations. This model allows us to predict how inequality influences cooperative behavior. Allocation of resources is manipulated by three treatments that vary in terms of procedural justice: allocating resources randomly, based on merit, and based on ascription. As predicted, procedural justice influences cooperation significantly. Moreover, gender is found to be an important factor interacting with the association between procedural justice and cooperative behavior.
    corecore