232 research outputs found

    On Non Perturbative Corrections to the Potential for Heavy Quarks

    Get PDF
    We discuss non perturbative corrections to the Coulomb-like potential of heavy quarks at short distances. We consider both the standard framework provided by infrared renormalons and the assumption that confinement does not allow weak fields to penetrate the vacuum. In the former case the leading correction at short distances turns out to be quadratic in r for static quarks. In the latter case we find a potential which is proportional to r as r rightarrow 0. We point out that similar effects arise due to a new kind of non perturbative correction proportional to 1/Q^2, which is unaccounted for by the operator product expansion and which was recently discussed within a different framework. Phenomenological implications of the linear correction to the potential are briefly reviewed.Comment: 13 pages, latex, 2 figures, uses eps

    Interplay between perturbative and non-perturbative effects in the stealthy Higgs model

    Full text link
    We study corrections to electroweak precision variables in a model with strongly interacting singlet Higgs particles.Comment: 31 pages, Latex, 11 figure

    Non-Stationary Dark Energy Around a Black Hole

    Full text link
    Numerical simulations of the accretion of test scalar fields with non-standard kinetic terms (of the k-essence type) onto a Schwarzschild black hole are performed. We find a full dynamical solution for the spherical accretion of a Dirac-Born-Infeld type scalar field. The simulations show that the accretion eventually settles down to a well known stationary solution. This particular analytical steady state solution maintains two separate horizons. The standard horizon is for the usual particles propagating with the limiting speed of light, while the other sonic horizon is for the k-essence perturbations propagating with the speed of sound around this accreting background. For the case where the k-essence perturbations propagate superluminally, we show that one can send signals from within a black hole during the approach to the stationary solution. We also find that a ghost condensate model settles down to a stationary solution during the accretion process.Comment: 8 pages, 10 figure

    Cosmology with minimal length uncertainty relations

    Full text link
    We study the effects of the existence of a minimal observable length in the phase space of classical and quantum de Sitter (dS) and Anti de Sitter (AdS) cosmology. Since this length has been suggested in quantum gravity and string theory, its effects in the early universe might be expected. Adopting the existence of such a minimum length results in the Generalized Uncertainty Principle (GUP), which is a deformed Heisenberg algebra between minisuperspace variables and their momenta operators. We extend these deformed commutating relations to the corresponding deformed Poisson algebra in the classical limit. Using the resulting Poisson and Heisenberg relations, we then construct the classical and quantum cosmology of dS and Ads models in a canonical framework. We show that in classical dS cosmology this effect yields an inflationary universe in which the rate of expansion is larger than the usual dS universe. Also, for the AdS model it is shown that GUP might change the oscillatory nature of the corresponding cosmology. We also study the effects of GUP in quantized models through approximate analytical solutions of the Wheeler-DeWitt (WD) equation, in the limit of small scale factor for the universe, and compare the results with the ordinary quantum cosmology in each case.Comment: 11 pages, 4 figures, to appear in IJMP

    Power Corrections and the Gaussian Form of the Meson Wave Function

    Get PDF
    The wave function of a light pseudoscalar meson is considered and nonperturbative corrections as signaled by perturbation theory are calculated. Two schemes are used, the massive gluon and the running coupling scheme. Both indicate the presence of leading power corrections of O(b2){\cal O}(b^2), whose exponentiation leads to a Gaussian dependence of the wave function on the impact parameter bb. The dependence of this correction on the light cone energy fractions of the quark and the antiquark is discussed and compared with other models for the meson

    Ultra-High Energy Probes of Classicalization

    Full text link
    Classicalizing theories are characterized by a rapid growth of the scattering cross section. This growth converts these sort of theories in interesting probes for ultra-high energy experiments even at relatively low luminosity, such as cosmic rays or Plasma Wakefield accelerators. The microscopic reason behind this growth is the production of N-particle states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories this is the quantum portrait of what in the classical limit are known as black holes. We emphasize the importance of this quantum picture which liberates us from the artifacts of the classical geometric limit and allows to scan a much wider landscape of experimentally-interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories for which the growth of classicalon production cross section can be as efficient as to compete with QCD cross section already at 100 TeV energy, signaling production of quantum black holes with graviton occupation number of order 10^4.Comment: 23 pages, late
    corecore