85 research outputs found
From thermal rectifiers to thermoelectric devices
We discuss thermal rectification and thermoelectric energy conversion from
the perspective of nonequilibrium statistical mechanics and dynamical systems
theory. After preliminary considerations on the dynamical foundations of the
phenomenological Fourier law in classical and quantum mechanics, we illustrate
ways to control the phononic heat flow and design thermal diodes. Finally, we
consider the coupled transport of heat and charge and discuss several general
mechanisms for optimizing the figure of merit of thermoelectric efficiency.Comment: 42 pages, 22 figures, review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer
In a pioneer study, we showed 10 years ago that enhanced tissue levels of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 in gastric cancers, as determined by zymography, were related with worse overall survival of the patients. To corroborate these observations, we now assessed MMP-2 and MMP-9 with new techniques in an expanded group of gastric cancer patients (n=81) and included for comparison MMP-7, MMP-8 and the tissue inhibitors of MMPs, TIMP-1 and -2. All MMPs and TIMP-1 were significantly increased in tumour tissue compared to normal gastric mucosa. Matrix metalloproteinase-7, -8 and -9, and the TIMPs showed some correlations with the clinicopathologic parameters TNM, WHO and Laurén classification, but their levels were not related with survival. Regardless of the determination method used, that is, enzyme-linked immunosorbent assay or bioactivity assay, an enhanced tumour MMP-2 level did not show a significant correlation with any of the clinicopathological parameters, but was confirmed to be an independent prognostic factor in gastric cancer
Fungal enzyme sets for plant polysaccharide degradation
Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families
- …