8 research outputs found
Intercellular Trafficking of Gold Nanostars in Uveal Melanoma Cells for Plasmonic Photothermal Therapy
Efficient plasmonic photothermal therapies (PPTTs) using non-harmful pulse laser irradiation at the near-infrared (NIR) are a highly sought goal in nanomedicine. These therapies rely on the use of plasmonic nanostructures to kill cancer cells while minimizing the applied laser power density. Cancer cells have an unsettled capacity to uptake, retain, release, and re-uptake gold nanoparticles, thus offering enormous versatility for research. In this work, we have studied such cell capabilities for nanoparticle trafficking and its impact on the effect of photothermal treatments. As our model system, we chose uveal (eye) melanoma cells, since laser-assisted eye surgery is routinely used to treat glaucoma and cataracts, or vision correction in refractive surgery. As nanostructure, we selected gold nanostars (Au NSs) due to their high photothermal efficiency at the near-infrared (NIR) region of the electromagnetic spectrum. We first investigated the photothermal effect on the basis of the dilution of Au NSs induced by cell division. Using this approach, we obtained high PPTT efficiency after several cell division cycles at an initial low Au NS concentration (pM regime). Subsequently, we evaluated the photothermal effect on account of cell division upon mixing Au NS-loaded and non-loaded cells. Upon such mixing, we observed trafficking of Au NSs between loaded and non-loaded cells, thus achieving effective PPTT after several division cycles under low irradiation conditions (below the maximum permissible exposure threshold of skin). Our study reveals the ability of uveal melanoma cells to release and re-uptake Au NSs that maintain their plasmonic photothermal properties throughout several cell division cycles and re-uptake. This approach may be readily extrapolated to real tissue and even to treat in situ the eye tumor itself. We believe that our method can potentially be used as co-therapy to disperse plasmonic gold nanostructures across affected tissues, thus increasing the effectiveness of classic PPTT
Microfluidic fabrication of vesicles with hybrid lipid/nanoparticle bilayer membranes
Hybrid lipid/nanoparticle membranes are suitable model systems both to study the complex interactions between nanoparticles and biological membranes, and to demonstrate technological concepts in cellular sensing and drug delivery. Unfortunately, embedding nanoparticles into the bilayer membrane of lipid vesicles is challenging due to the poor control over the vesicle fabrication process of conventional methodologies and the fragility of the modified lipid bilayer assembly. Here, the utility of water-in-oil-in-water double emulsion drops with ultrathin oil shells as templates to form vesicles with hybrid lipid/nanoparticle membranes is reported. Moreover, upon bilayer formation, which occurs through dewetting of the oil solvent from the double emulsion drops, a phase separation is observed in the vesicle membrane, with solid-like nanoparticle-rich microdomains segregated into a continuous fluid-like nanoparticle-poor phase. This phase coexistence evidences the complex nature of the interactions between nanoparticles and lipid membranes. In this context, this microfluidic-assisted fabrication strategy may play a crucial role in thoroughly understanding such interactions given the uniform membrane properties of the resulting productions. Furthermore, the high encapsulation efficiency of both the vesicle membrane and core endows these vesicles with great potential for sensing applications and drug delivery.SMA