118,626 research outputs found
Pressure study of nematicity and quantum criticality in SrRuO for an in-plane field
We study the relationship between the nematic phases of SrRuO and
quantum criticality. At ambient pressure, one nematic phase is associated with
a metamagnetic quantum critical end point (QCEP) when the applied magnetic
field is near the \textit{c}-axis. We show, however, that this metamagnetic
transition does not produce the same nematic signatures when the QCEP is
reached by hydrostatic pressure with the field applied in the
\textit{ab}-plane. Moreover, a second nematic phase, that is seen for field
applied in the \textit{ab}-plane close to, but not right at, a second
metamagnetic anomaly, persists with minimal change to the highest applied
pressure, 16.55 kbar. Taken together our results suggest that metamagnetic
quantum criticality may not be necessary for the formation of a nematic phase
in SrRuO
Large magnetothermal conductivity in GdBaCo_{2}O_{5+x} single crystals
To study the effects of paramagnetic spins on phonons, both the in-plane and
the c-axis heat transport of GdBaCo_{2}O_{5+x} (GBCO) single crystals are
measured at low temperature down to 0.36 K and in magnetic field up to 16 T. It
is found that the phonon heat transport is very strongly affected by the
magnetic field and nearly 5 times increase of the thermal conductivity in
several Tesla field is observed at 0.36 K. It appears that phonons are
resonantly scattered by paramagnetic spins in zero field and the application of
magnetic field removes such strong scattering, but the detailed mechanism is to
be elucidated.Comment: 5 pages, 5 figures, accepted for publication in Phys. Rev.
Input-output relations for a 3-port grating coupled Fabry-Perot cavity
We analyze an optical 3-port reflection grating by means of a scattering
matrix formalism. Amplitude and phase relations between the 3 ports, i.e. the 3
orders of diffraction are derived. Such a grating can be used as an
all-reflective, low-loss coupler to Fabry-Perot cavities. We derive the input
output relations of a 3-port grating coupled cavity and find distinct
properties not present in 2-port coupled cavities. The cavity relations further
reveal that the 3-port coupler can be designed such that the additional cavity
port interferes destructively. In this case the all-reflective, low-loss,
single-ended Fabry-Perot cavity becomes equivalent to a standard transmissive,
2-port coupled cavity
Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin
Gravitational wave searches for continuous-wave signals from neutron stars
are especially challenging when the star's spin frequency is unknown a priori
from electromagnetic observations and wanders stochastically under the action
of internal (e.g. superfluid or magnetospheric) or external (e.g. accretion)
torques. It is shown that frequency tracking by hidden Markov model (HMM)
methods can be combined with existing maximum likelihood coherent matched
filters like the F-statistic to surmount some of the challenges raised by spin
wandering. Specifically it is found that, for an isolated, biaxial rotor whose
spin frequency walks randomly, HMM tracking of the F-statistic output from
coherent segments with duration T_drift = 10d over a total observation time of
T_obs = 1yr can detect signals with wave strains h0 > 2e-26 at a noise level
characteristic of the Advanced Laser Interferometer Gravitational Wave
Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in
a binary orbit, whose orbital period and semi-major axis are known
approximately from electromagnetic observations, HMM tracking of the
Bessel-weighted F-statistic output can detect signals with h0 > 8e-26. An
efficient, recursive, HMM solver based on the Viterbi algorithm is
demonstrated, which requires ~10^3 CPU-hours for a typical, broadband (0.5-kHz)
search for the low-mass X-ray binary Scorpius X-1, including generation of the
relevant F-statistic input. In a "realistic" observational scenario, Viterbi
tracking successfully detects 41 out of 50 synthetic signals without spin
wandering in Stage I of the Scorpius X-1 Mock Data Challenge convened by the
LIGO Scientific Collaboration down to a wave strain of h0 = 1.1e-25, recovering
the frequency with a root-mean-square accuracy of <= 4.3e-3 Hz
Conversion of a transverse density modulation into a longitudinal phase space modulation using an emittance exchange technique
We report on an experiment to produce a train of sub-picosecond microbunches
using a transverse-to-longitudinal emittance exchange technique. The generation
of a modulation on the longitudinal phase space is done by converting an
initial horizontal modulation produced using a multislits mask. The preliminary
experimental data clearly demonstrate the conversion process. To date only the
final energy modulation has been measured. However numerical simulations, in
qualitative agreement with the measurements, indicate that the conversion
process should also introduce a temporal modulation.Comment: 4 pages, 6 figures. Submitted to the proceedings of the Physics and
Applications of High-Brightness Electron Beams (HBEB09), Nov. 16-19, 2009,
Maui H
Crawling in Rogue's dungeons with (partitioned) A3C
Rogue is a famous dungeon-crawling video-game of the 80ies, the ancestor of
its gender. Rogue-like games are known for the necessity to explore partially
observable and always different randomly-generated labyrinths, preventing any
form of level replay. As such, they serve as a very natural and challenging
task for reinforcement learning, requiring the acquisition of complex,
non-reactive behaviors involving memory and planning. In this article we show
how, exploiting a version of A3C partitioned on different situations, the agent
is able to reach the stairs and descend to the next level in 98% of cases.Comment: Accepted at the Fourth International Conference on Machine Learning,
Optimization, and Data Science (LOD 2018
The fission yeast FANCM ortholog directs non-crossover recombination during meiosis
Peer reviewedPostprin
- …