53 research outputs found

    Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells

    Get PDF
    An important feature of atopic asthma is the T cell–driven late phase reaction involving transient bronchoconstriction followed by development of airways hyperresponsiveness (AHR). Using a unique rat asthma model we recently showed that the onset and duration of the aeroallergen-induced airway mucosal T cell activation response in sensitized rats is determined by the kinetics of functional maturation of resident airway mucosal dendritic cells (AMDCs) mediated by cognate interactions with CD4+ T helper memory cells. The study below extends these investigations to chronic aeroallergen exposure. We demonstrate that prevention of ensuing cycles of T cell activation and resultant AHR during chronic exposure of sensitized rats to allergen aerosols is mediated by CD4+CD25+Foxp3+LAG3+ CTLA+CD45RC+ T cells which appear in the airway mucosa and regional lymph nodes within 24 h of initiation of exposure, and inhibit subsequent Th-mediated upregulation of AMDC functions. These cells exhibit potent regulatory T (T reg) cell activity in both in vivo and ex vivo assay systems. The maintenance of protective T reg activity is absolutely dependent on continuing allergen stimulation, as interruption of exposure leads to waning of T reg activity and reemergence of sensitivity to aeroallergen exposure manifesting as AMDC/T cell upregulation and resurgence of T helper 2 cytokine expression, airways eosinophilia, and AHR

    Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-beta signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;mu MT-/- compound mutant mice, but fibrosis still occurred in their Smad3-/- counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1a1 gene transcription independently of canonical TGF-beta/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis

    Pulmonary Delivery of Virosome-Bound Antigen Enhances Antigen-Specific CD4(+) T Cell Proliferation Compared to Liposome-Bound or Soluble Antigen.

    Get PDF
    Pulmonary administration of biomimetic nanoparticles loaded with antigen may represent an effective strategy to directly modulate adaptive immune responses in the respiratory tract. Depending on the design, virosomes may not only serve as biomimetic antigen carriers but are also endowed with intrinsic immune-stimulatory properties. We designed fluorescently labeled influenza-derived virosomes and liposome controls coupled to the model antigen ovalbumin to investigate uptake, phenotype changes, and antigen processing by antigen-presenting cells exposed to such particles in different respiratory tract compartments. Both virosomes and liposomes were captured by pulmonary macrophages and dendritic cells alike and induced activation in particle-bearing cells by upregulation of costimulatory markers such as CD40, CD80, CD86, PD-L1, PD-L2, and ICOS-L. Though antigen processing and accumulation of both coupled and soluble antigen was similar between virosomes and liposomes, only ovalbumin-coupled virosomes generated a strong antigen-specific CD4(+) T cell proliferation. Pulmonary administrated antigen-coupled virosomes therefore effectively induced adaptive immune responses and may be utilized in novel preventive or therapeutic approaches in the respiratory tract

    Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs) using microarray in a multicenter study.

    Get PDF
    The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens

    Cyclophosphamide Chemotherapy Sensitizes Tumor Cells to TRAIL-Dependent CD8 T Cell-Mediated Immune Attack Resulting in Suppression of Tumor Growth

    Get PDF
    Background: Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. Methods and Findings: We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-α/β response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-γ and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5) antibodies. Conclusion: The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion

    NO2 inhalation induces maturation of pulmonary CD11c+ cells that promote antigenspecific CD4+ T cell polarization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitrogen dioxide (NO<sub>2</sub>) is an air pollutant associated with poor respiratory health, asthma exacerbation, and an increased likelihood of inhalational allergies. NO<sub>2 </sub>is also produced endogenously in the lung during acute inflammatory responses. NO<sub>2 </sub>can function as an adjuvant, allowing for allergic sensitization to an innocuous inhaled antigen and the generation of an antigen-specific Th2 immune response manifesting in an allergic asthma phenotype. As CD11c<sup>+ </sup>antigen presenting cells are considered critical for naïve T cell activation, we investigated the role of CD11c<sup>+ </sup>cells in NO<sub>2</sub>-promoted allergic sensitization.</p> <p>Methods</p> <p>We systemically depleted CD11c<sup>+ </sup>cells from transgenic mice expressing a simian diphtheria toxin (DT) receptor under of control of the CD11c promoter by administration of DT. Mice were then exposed to 15 ppm NO<sub>2 </sub>followed by aerosolized ovalbumin to promote allergic sensitization to ovalbumin and were studied after subsequent inhaled ovalbumin challenges for manifestation of allergic airway disease. In addition, pulmonary CD11c<sup>+ </sup>cells from wildtype mice were studied after exposure to NO<sub>2 </sub>and ovalbumin for cellular phenotype by flow cytometry and <it>in vitro </it>cytokine production.</p> <p>Results</p> <p>Transient depletion of CD11c<sup>+ </sup>cells during sensitization attenuated airway eosinophilia during allergen challenge and reduced Th2 and Th17 cytokine production. Lung CD11c<sup>+ </sup>cells from wildtype mice exhibited a significant increase in MHCII, CD40, and OX40L expression 2 hours following NO<sub>2 </sub>exposure. By 48 hours, CD11c<sup>+</sup>MHCII<sup>+ </sup>DCs within the mediastinal lymph node (MLN) expressed maturation markers, including CD80, CD86, and OX40L. CD11c<sup>+</sup>CD11b<sup>- </sup>and CD11c<sup>+</sup>CD11b<sup>+ </sup>pulmonary cells exposed to NO<sub>2 </sub><it>in vivo </it>increased uptake of antigen 2 hours post exposure, with increased ova-Alexa 647<sup>+ </sup>CD11c<sup>+</sup>MHCII<sup>+ </sup>DCs present in MLN from NO<sub>2</sub>-exposed mice by 48 hours. Co-cultures of ova-specific CD4<sup>+ </sup>T cells from naïve mice and CD11c<sup>+ </sup>pulmonary cells from NO<sub>2</sub>-exposed mice produced IL-1, IL-12p70, and IL-6 <it>in vitro </it>and augmented antigen-induced IL-5 production.</p> <p>Conclusions</p> <p>CD11c<sup>+ </sup>cells are critical for NO<sub>2</sub>-promoted allergic sensitization. NO<sub>2 </sub>exposure causes pulmonary CD11c<sup>+ </sup>cells to acquire a phenotype capable of increased antigen uptake, migration to the draining lymph node, expression of MHCII and co-stimulatory molecules required to activate naïve T cells, and secretion of polarizing cytokines to shape a Th2/Th17 response.</p
    corecore