2,544 research outputs found
Cool for Cats
The iconic Schr\"odinger's cat state describes a system that may be in a
superposition of two macroscopically distinct states, for example two clearly
separated oscillator coherent states. Quite apart from their role in
understanding the quantum classical boundary, such states have been suggested
as offering a quantum advantage for quantum metrology, quantum communication
and quantum computation. As is well known these applications have to face the
difficulty that the irreversible interaction with an environment causes the
superposition to rapidly evolve to a mixture of the component states in the
case that the environment is not monitored. Here we show that by engineering
the interaction with the environment there exists a large class of systems that
can evolve irreversibly to a cat state. To be precise we show that it is
possible to engineer an irreversible process so that the steady state is close
to a pure Schr\"odinger's cat state by using double well systems and an
environment comprising two-photon (or phonon) absorbers. We also show that it
should be possible to prolong the lifetime of a Schr\"odinger's cat state
exposed to the destructive effects of a conventional single-photon decohering
environment. Our protocol should make it easier to prepare and maintain
Schr\"odinger cat states which would be useful in applications of quantum
metrology and information processing as well as being of interest to those
probing the quantum to classical transition.Comment: 10 pages, 7 figures. Significantly updated version with supplementary
informatio
Is a single photon's wave front observable?
The ultimate goal and the theoretical limit of weak signal detection is the
ability to detect a single photon against a noisy background. [...] In this
paper we show, that a combination of a quantum metamaterial (QMM)-based sensor
matrix and quantum non-demolition (QND) readout of its quantum state allows, in
principle, to detect a single photon in several points, i.e., to observe its
wave front.
Actually, there are a few possible ways of doing this, with at least one
within the reach of current experimental techniques for the microwave range.
The ability to resolve the quantum-limited signal from a remote source against
a much stronger local noise would bring significant advantages to such diverse
fields of activity as, e.g., microwave astronomy and missile defence.
The key components of the proposed method are 1) the entangling interaction
of the incoming photon with the QMM sensor array, which produces the spatially
correlated quantum state of the latter, and 2) the QND readout of the
collective observable (e.g., total magnetic moment), which characterizes this
quantum state. The effects of local noise (e.g., fluctuations affecting the
elements of the matrix) will be suppressed relative to the signal from the
spatially coherent field of (even) a single photon.Comment: 13 pages, 4 figure
Tunable refraction in a two dimensional quantum metamaterial
In this paper we consider a two-dimensional metamaterial comprising an array
of qubits (two level quantum objects). Here we show that a two-dimensional
quantum metamaterial may be controlled, e.g. via the application of a magnetic
flux, so as to provide controllable refraction of an input signal. Our results
are consistent with a material that could be quantum birefringent (beam
splitter) or not dependent on the application of this control parameter. We
note that quantum metamaterials as proposed here may be fabricated from a
variety of current candidate technologies from superconducting qubits to
quantum dots. Thus the ideas proposed in this work would be readily testable in
existing state of the art laboratories.Comment: 4 pages, 2 figure
Soil, water, and vegetation conditions in south Texas
The author has identified the following significant results. Software development for a computer-aided crop and soil survey system is nearing completion. Computer-aided variety classification accuracies using LANDSAT-1 MSS data for a 600 hectare citrus farm were 83% for Redblush grapefruit and 91% for oranges. These accuracies indicate that there is good potential for computer-aided inventories of grapefruit and orange citrus orchards with LANDSAT-type MSS data. Mean digital values of clouds differed statistically from those for crop, soil, and water entities, and those for cloud shadows were enough lower than sunlit crop and soil to be distinguishable. The standard errors of estimate for the calibration of computer compatible tape coordinate system (pixel and record) to earth coordinate system (longitude and latitude) for 6 LANDSAT scenes ranged from 0.72 to 1.50 pixels and from 0.58 to 1.75 records
Module identification in bipartite and directed networks
Modularity is one of the most prominent properties of real-world complex
networks. Here, we address the issue of module identification in two important
classes of networks: bipartite networks and directed unipartite networks. Nodes
in bipartite networks are divided into two non-overlapping sets, and the links
must have one end node from each set. Directed unipartite networks only have
one type of nodes, but links have an origin and an end. We show that directed
unipartite networks can be conviniently represented as bipartite networks for
module identification purposes. We report a novel approach especially suited
for module detection in bipartite networks, and define a set of random networks
that enable us to validate the new approach
Reflectance of vegetation, soil, and water
The author has identified the following significant results. Bands 4, 5, and 7 and 5, 6, and 7 were best for distinguishing among crop and soil categories in ERTS-1 SCENES 1182-16322 (1-21-73) and 1308-16323 (5-21-73) respectively. Chlorotic sorghum areas 2.8 acres or larger in size were identified on a computer printout of band 5 data. Reflectance of crop residues was more often different from bare soil in band 4 than in bands 5, 6, and 7. Simultaneously acquired aircraft and spacecraft MSS data indicated that spacecraft surveys are as reliable as aircraft surveys. ERTS-1 data were successfully used to estimate acreage of citrus, cotton, and sorghum as well as idle crop land
TELEPENSOUTH project: Measurement of the Earth gravitomagnetic field in a terrestrial laboratory
We will expose a preliminary study on the feasibility of an experiment
leading to a direct measurement of the gravitomagnetic field generated by the
rotational motion of the Earth. This measurement would be achieved by means of
an appropriate coupling of a TELEscope and a Foucault PENdulum in a laboratory
on ground, preferably at the SOUTH pole. An experiment of this kind was firstly
proposed by Braginski, Polnarev and Thorne, 18 years ago, but it was never
re-analyzed.Comment: 7 pages, LaTeX, Springer style files included. Contribution to the
Proceedings of the Spanish Relativity Meeting-ERE-2001 (Madrid, September
2001). To appear in the book "Relativistic Astrophysics", Lecture Notes in
Physics, Springer Verlag (2002), edited by L. Fernandez-Jambrina, L.M.
Gonzalez-Romer
- …