23 research outputs found

    Cold trapped atoms detected with evanescent waves

    Full text link
    We demonstrate the in situ detection of cold 87 Rb atoms near a dielectric surface using the absorption of a weak, resonant evanescent wave. We have used this technique in time of flight experiments determining the density of atoms falling on the surface. A quantitative understanding of the measured curve was obtained using a detailed calculation of the evanescent intensity distribution. We have also used it to detect atoms trapped near the surface in a standing-wave optical dipole potential. This trap was loaded by inelastic bouncing on a strong, repulsive evanescent potential. We estimate that we trap 1.5 x 10 4 atoms at a density 100 times higher than the falling atoms.Comment: 5 pages, 3 figure

    An atom interferometer enabled by spontaneous decay

    Get PDF
    We investigate the question whether Michelson type interferometry is possible if the role of the beam splitter is played by a spontaneous process. This question arises from an inspection of trajectories of atoms bouncing inelastically from an evanescent-wave (EW) mirror. Each final velocity can be reached via two possible paths, with a {\it spontaneous} Raman transition occurring either during the ingoing or the outgoing part of the trajectory. At first sight, one might expect that the spontaneous character of the Raman transfer would destroy the coherence and thus the interference. We investigated this problem by numerically solving the Schr\"odinger equation and applying a Monte-Carlo wave-function approach. We find interference fringes in velocity space, even when random photon recoils are taken into account.Comment: 6 pages, 5 figures, we clarified the semiclassical interpretation of Fig.

    Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface

    Full text link
    We have observed a distance-dependent absorption linewidth of cold 87^{87}Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was created using a magneto-optical trap (MOT) and optical molasses cooling. Evanescent waves (EW) were used to observe the behavior of the atoms near the surface. We observed an increase of the absorption linewidth with up to 25% with respect to the free-space value. Approximately half the broadening can be explained by cavity-quantum electrodynamics (CQED) as an increase of the natural linewidth and inhomogeneous broadening. The remainder we attribute to local Stark shifts near the surface. By varying the characteristic EW length we have observed a distance dependence characteristic for CQED.Comment: 6 pages, 6 figures, some minor revision
    corecore