3,860 research outputs found
Hall drift of axisymmetric magnetic fields in solid neutron-star matter
Hall drift, i. e., transport of magnetic flux by the moving electrons giving
rise to the electrical current, may be the dominant effect causing the
evolution of the magnetic field in the solid crust of neutron stars. It is a
nonlinear process that, despite a number of efforts, is still not fully
understood. We use the Hall induction equation in axial symmetry to obtain some
general properties of nonevolving fields, as well as analyzing the evolution of
purely toroidal fields, their poloidal perturbations, and current-free, purely
poloidal fields. We also analyze energy conservation in Hall instabilities and
write down a variational principle for Hall equilibria. We show that the
evolution of any toroidal magnetic field can be described by Burgers' equation,
as previously found in plane-parallel geometry. It leads to sharp current
sheets that dissipate on the Hall time scale, yielding a stationary field
configuration that depends on a single, suitably defined coordinate. This
field, however, is unstable to poloidal perturbations, which grow as their
field lines are stretched by the background electron flow, as in instabilities
earlier found numerically. On the other hand, current-free poloidal
configurations are stable and could represent a long-lived crustal field
supported by currents in the fluid stellar core.Comment: 8 pages, 5 figure panels; new version with very small correction;
accepted by Astronomy & Astrophysic
Relativistic models of magnetars: the twisted-torus magnetic field configuration
We find general relativistic solutions of equilibrium magnetic field
configurations in magnetars, extending previous results of Colaiuda et al.
(2008). Our method is based on the solution of the relativistic Grad-Shafranov
equation, to which Maxwell's equations can be reduced in some limit. We obtain
equilibrium solutions with the toroidal magnetic field component confined into
a finite region inside the star, and the poloidal component extending to the
exterior. These so-called twisted-torus configurations have been found to be
the final outcome of dynamical simulations in the framework of Newtonian
gravity, and appear to be more stable than other configurations. The solutions
include higher order multipoles, which are coupled to the dominant dipolar
field. We use arguments of minimal energy to constrain the ratio of the
toroidal to the poloidal field.Comment: 13 pages, 12 figures. Minor changes to match the version published on
MNRA
Performance and stall limits of an afterburner-equipped turbofan engine with and without inlet flow distortion
Performance and stall limits of afterburner-type turbofan engine with and without inlet flow distortio
Open access to economic outcome data will help to bridge the gap between clinical trials and clinical guidelines
Buoyed by a burgeoning medical culture of “appropriate use” and rising doctor awareness of the financial ruin that threatens many patients who navigate expensive treatments in pursuit of better health, medical specialist societies have grown increasingly vocal about integrating economic value in their clinical guidelines. These encouraging developments are, however, threatened by a worsening decline in the generalisability of randomised controlled trials, a concern supported by widening differences between the characteristics of patients enrolled in trials and those of the populations targeted for intervention outside trials
Averting HIV Infections in New York City: A Modeling Approach Estimating the Future Impact of Additional Behavioral and Biomedical HIV Prevention Strategies
Background:New York City (NYC) remains an epicenter of the HIV epidemic in the United States. Given the variety of evidence-based HIV prevention strategies available and the significant resources required to implement each of them, comparative studies are needed to identify how to maximize the number of HIV cases prevented most economically.Methods:A new model of HIV disease transmission was developed integrating information from a previously validated micro-simulation HIV disease progression model. Specification and parameterization of the model and its inputs, including the intervention portfolio, intervention effects and costs were conducted through a collaborative process between the academic modeling team and the NYC Department of Health and Mental Hygiene. The model projects the impact of different prevention strategies, or portfolios of prevention strategies, on the HIV epidemic in NYC.Results:Ten unique interventions were able to provide a prevention benefit at an annual program cost of less than 106,378; the total cost was in excess of 100 million per year, on average). The cost-savings of prevented infections was estimated at more than 250 million per year, on average).Conclusions:Optimal implementation of a portfolio of evidence-based interventions can have a substantial, favorable impact on the ongoing HIV epidemic in NYC and provide future cost-saving despite significant initial costs. © 2013 Kessler et al
- …