332 research outputs found
Acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure
Background:
Omecamtiv mecarbil (OM) is a selective cardiac myosin activator that increases myocardial function in healthy volunteers and in patients with chronic heart failure.
Objectives:
This study evaluated the pharmacokinetics, pharmacodynamics, tolerability, safety, and efficacy of OM in patients with acute heart failure (AHF).
Methods:
Patients admitted for AHF with left ventricular ejection fraction ā¤40%, dyspnea, and elevated plasma concentrations of natriuretic peptides were randomized to receive a double-blind, 48-h intravenous infusion of placebo or OM in 3 sequential, escalating-dose cohorts.
Results:
In 606 patients, OM did not improve the primary endpoint of dyspnea relief (3 OM dose groups and pooled placebo: placebo, 41%; OM cohort 1, 42%; cohort 2, 47%; cohort 3, 51%; p = 0.33) or any of the secondary outcomes studied. In supplemental, pre-specified analyses, OM resulted in greater dyspnea relief at 48 h (placebo, 37% vs. OM, 51%; p = 0.034) and through 5 days (p = 0.038) in the high-dose cohort. OM exerted plasma concentration-related increases in left ventricular systolic ejection time (p < 0.0001) and decreases in end-systolic dimension (p < 0.05). The adverse event profile and tolerability of OM were similar to those of placebo, without increases in ventricular or supraventricular tachyarrhythmias. Plasma troponin concentrations were higher in OM-treated patients compared with placebo (median difference at 48 h, 0.004 ng/ml), but with no obvious relationship with OM concentration (p = 0.95).
Conclusions:
In patients with AHF, intravenous OM did not meet the primary endpoint of dyspnea improvement, but it was generally well tolerated, it increased systolic ejection time, and it may have improved dyspnea in the high-dose group. (Acute Treatment with Omecamtiv Mecarbil to Increase Contractility in Acute Heart Failure [ATOMIC-AHF]; NCT01300013)
Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain
Phagocyte recognition and clearance of bacteria play essential roles in the host response to infection. In an on-going forward genetic screen, we identify the Drosophila melanogaster scavenger receptor Croquemort as a receptor for Staphylococcus aureus, implicating for the first time the CD36 family as phagocytic receptors for bacteria. In transfection assays, the mammalian Croquemort paralogue CD36 confers binding and internalization of Gram-positive and, to a lesser extent, Gram-negative bacteria. By mutational analysis, we show that internalization of S. aureus and its component lipoteichoic acid requires the COOH-terminal cytoplasmic portion of CD36, specifically Y463 and C464, which activates Toll-like receptor (TLR) 2/6 signaling. Macrophages lacking CD36 demonstrate reduced internalization of S. aureus and its component lipoteichoic acid, accompanied by a marked defect in tumor necrosis factor-Ī± and IL-12 production. As a result, Cd36ā/ā mice fail to efficiently clear S. aureus in vivo resulting in profound bacteraemia. Thus, response to S. aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain, which initiates TLR2/6 signaling
Integration of longitudinal and circumferential strain predicts volumetric change across the cardiac cycle and differentiates patients along the heart failure continuum
Abstract
Background
Left ventricular (LV) circumferential and longitudinal strain provide important insight into LV mechanics and function, each contributing to volumetric changes throughout the cardiac cycle. We sought to explore this strain-volume relationship in more detail, by mathematically integrating circumferential and longitudinal strain and strain rate to predict LV volume and volumetric rates of change.
Methods
Cardiac magnetic resonance (CMR) imaging from 229 participants from the Alberta HEART Study (46 healthy controls, 77 individuals at risk for developing heart failure [HF], 70 patients with diagnosed HF with preserved ejection fraction [HFpEF], and 36 patients with diagnosed HF with reduced ejection fraction [HFrEF]) were evaluated. LV volume was assessed by the method of disks and strain/strain rate were assessed by CMR feature tracking.
Results
Integrating endocardial circumferential and longitudinal strain provided a close approximation of LV ejection fraction (EFStrain), when compared to gold-standard volumetric assessment (EFVolume: rā=ā0.94, Pā<ā0.0001). Likewise, integrating circumferential and longitudinal strain rate provided a close approximation of peak ejection and peak filling rates (PERStrain and PFRStrain, respectively) compared to their gold-standard volume-time equivalents (PERVolume, rā=ā0.73, Pā<ā0.0001 and PFRVolume, rā=ā0.78, Pā<ā0.0001, respectively). Moreover, each integrated strain measure differentiated patients across the HF continuum (all Pā<ā0.01), with the HFrEF group having worse EFStrain, PERStrain, and PFRStrain compared to all other groups, and HFpEF having less favorable EFStrain and PFRStrain compared to both at-risk and control groups.
Conclusions
The data herein establish the theoretical framework for integrating discrete strain components into volumetric measurements across the cardiac cycle, and highlight the potential benefit of this approach for differentiating patients along the heart failure continuum
The Alberta Heart Failure Etiology and Analysis Research Team (HEART) study
Background Nationally, symptomatic heart failure affects 1.5-2% of Canadians, incurs $3 billion in hospital costs annually and the global burden is expected to double in the next 1ā2 decades. The current one-year mortality rate after diagnosis of heart failure remains high at >25%. Consequently, new therapeutic strategies need to be developed for this debilitating condition.
Methods/Design The objective of the Alberta HEART program (http://albertaheartresearch.ca) is to develop novel diagnostic, therapeutic and prognostic approaches to patients with heart failure with preserved ejection fraction. We hypothesize that novel imaging techniques and biomarkers will aid in describing heart failure with preserved ejection fraction. Furthermore, the development of new diagnostic criteria will allow us to: 1) better define risk factors associated with heart failure with preserved ejection fraction; 2) elucidate clinical, cellular and molecular mechanisms involved with the development and progression of heart failure with preserved ejection fraction; 3) design and test new therapeutic strategies for patients with heart failure with preserved ejection fraction. Additionally, Alberta HEART provides training and education for enhancing translational medicine, knowledge translation and clinical practice in heart failure. This is a prospective observational cohort study of patients with, or at risk for, heart failure. Patients will have sequential testing including quality of life and clinical outcomes over 12 months. After that time, study participants will be passively followed via linkage to external administrative databases. Clinical outcomes of interest include death, hospitalization, emergency department visits, physician resource use and/or heart transplant. Patients will be followed for a total of 5 years.
Discussion Alberta HEART has the primary objective to define new diagnostic criteria for patients with heart failure with preserved ejection fraction. New criteria will allow for targeted therapies, diagnostic tests and further understanding of the patients, both at-risk for and with heart failure
Collaboration with general practitioners: preferences of medical specialists ā a qualitative study
BACKGROUND: Collaboration between general practitioners (GPs) and specialists has been the focus of many collaborative care projects during the past decade. Unfortunately, quite a number of these projects failed. This raises the question of what motivates medical specialists to initiate and continue participating with GPs in new collaborative care models. The following question is addressed in this study: What motivates medical specialists to initiate and sustain new models for collaborating with GPs? METHODS: We conducted semi-structured interviews with eighteen medical specialists in the province of Groningen, in the North of The Netherlands. The sampling criteria were age, gender, type of hospital in which they were practicing, and specialty. The interviews were recorded, fully transcribed, and analysed by three researchers working independently. The resulting motivational factors were grouped into categories. RESULTS: 'Teaching GPs' and 'regulating patient flow' (referrals) appeared to dominate when the motivational factors were considered. In addition, specialists want to develop relationships with the GPs on a more personal level. Most specialists believe that there is not much they can learn from GPs. 'Lack of time', 'no financial compensation', and 'no support from colleagues' were considered to be the main concerns to establishing collaborative care practices. Additionally, projects were often experienced as too complex and time consuming whereas guidelines were experienced as too restrictive. CONCLUSION: Specialists are particularly interested in collaborating because the GP is the gatekeeper for access to secondary health care resources. Specialists feel that they are able to teach the GPs something, but they do not feel that they have anything to learn from the GPs. With respect to professional expertise, therefore, specialists do not consider GPs as equals. Once personal relationships with the GPs have been established, an informal network with incidental professional contact seems to be sufficient to satisfy the collaborative needs of the specialist. The concerns seem to outweigh any positive motivational forces to developing new models of collaborative practice
Transforming growth factor Ī² receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction
<p>Abstract</p> <p>Background</p> <p>Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers.</p> <p>Methods</p> <p>Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months.</p> <p>Results</p> <p>In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ā¤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months.</p> <p>Conclusions</p> <p>We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.</p
Psychological Functioning and Disease-Related Quality of Life in Pediatric Patients With an Implantable Cardioverter Defibrillator
The objective of this multicenter study was to evaluate psychological functioning and disease-related quality of life (DRQoL) in pediatric patients with an implantable cardioverter defibrillator (ICD) in The Netherlands. Thirty patients were investigated; the mean age was 16.3Ā years, and the mean duration of implantation was 3.6Ā years. To assess psychological problems, three domains of the Symptom Checklist (SCL-90-R) were administered to the 25 patientsĀ >13Ā years old. DRQoL was assessed with a disease-specific pediatric questionnaire, the short-form 11-item Worries About (WA)ICDs Scale. PatientsĀ ā„13Ā years old scored significantly higher than the reference group on the domains of anxiety, depression, and sleeping problems of the SCL-90-R (TĀ =Ā 7.5, pĀ <Ā 0.001; TĀ =Ā 5.4, pĀ <Ā 0.001; and TĀ =Ā 7.8, pĀ <Ā 0.001, respectively). Patients who had received an (in)appropriate shock reported more depressive symptoms (TĀ =Ā 2.1, pĀ <Ā 0.03). Patients withĀ >2Ā years implant duration (NĀ =Ā 19) or who had received an (in)appropriate shock (NĀ =Ā 13) showed lower DRQoL scores on the modified WAICD (TĀ =Ā 2.1, pĀ <Ā 0.04; TĀ =Ā 2.1, pĀ <Ā 0.5, respectively). Age at implantation or underlying disease did not influence psychological problems or DRQoL. Young ICD patients showed more anxiety, depression, and sleeping disorders. Worries were increased among patients with ICD shocks and in those who had their ICD implanted forĀ >2Ā years. To determine psychological problems and help children to learn to cope with shocks, proper guidance and monitoring of young ICD patients are recommended
Developments in exercise capacity assessment in heart failure clinical trials and the rationale for the design of METEORIC-HF
Heart failure with reduced ejection fraction (HFrEF) is a highly morbid condition for which exercise intolerance is a major manifestation. However, methods to assess exercise capacity in HFrEF vary widely in clinical practice and in trials. We describe advances in exercise capacity assessment in HFrEF and a comparative analysis of how various therapies available for HFrEF impact exercise capacity. Current guideline-directed medical therapy has indirect effects on cardiac performance with minimal impact on measured functional capacity. Omecamtiv mecarbil is a novel selective cardiac myosin activator that directly increases cardiac contractility and in a phase 3 cardiovascular outcomes study significantly reduced the primary composite end point of time to first heart failure event or cardiovascular death in patients with HFrEF. The objective of the METEORIC-HF trial (Multicenter Exercise Tolerance Evaluation of Omecamtiv Mecarbil Related to Increased Contractility in Heart Failure) is to assess the effect of omecamtiv mecarbil versus placebo on multiple components of functional capacity in HFrEF. The primary end point is to test the effect of omecamtiv mecarbil compared with placebo on peak oxygen uptake as measured by cardiopulmonary exercise testing after 20 weeks of treatment. METEORIC-HF will provide state-of-the-art assessment of functional capacity by measuring ventilatory efficiency, circulatory power, ventilatory anaerobic threshold, oxygen uptake recovery kinetics, daily activity, and quality-of-life assessment. Thus, the METEORIC-HF trial will evaluate the potential impact of increased myocardial contractility with omecamtiv mecarbil on multiple important measures of functional capacity in ambulatory patients with symptomatic HFrEF
Rational Design and Characterization of D-Phe-Pro-D-Arg-Derived Direct Thrombin Inhibitors
The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both l- and d-amino acids, with the general sequence d-Phe(P3)-Pro(P2)-d-Arg(P1)-P1ā²-CONH2. The P1ā² position was scanned with l- and d-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1ā² position. The lead tetrapeptide, d-Phe-Pro-d-Arg-d-Thr-CONH2, competitively inhibits Ī±-thrombin's cleavage of the S2238 chromogenic substrate with a Ki of 0.92 ĀµM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1ā² l-isoleucine (fPrI), l-cysteine (fPrC) or d-threonine (fPrt)) in complex with human Ī±-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the d-Arg residue in position P1 and thrombin are similar to those observed for the l-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 d-Arg and a bulkier P1ā² residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the d-stereochemistry of the residues at positions P1 and P1ā²
- ā¦