4 research outputs found

    Intelligent module for monitoring proportional directional valves in hydraulic drive systems

    No full text
    Increased performance of hydraulic drive components, as well as easier maintenance and diagnostics, can be achieved through the use of intelligent devices. Introducing sensors, electronic blocks and control algorithms into the equipment will enable easier repairs in the case of failure, or can increase the efficiency of the installation by providing selected operating parameters to the machine controller. In the case of a malfunction, the smart device can provide error codes. Smart devices can receive and send via various communication protocols (RS232, CAN, Fieldbus, Modbus) commands and feedback signals of monitored parameters. This paper presents the construction of such a monitoring and diagnostics module, the test application and the obtained charts.Zwiększenie wydajności podzespołów hydraulicznych instalacji napędowych, jak również łatwiejsza konserwacja i diagnostyka mogą zostać osiągnięte poprzez zastosowanie inteligentnych urządzeń. Wprowadzenie czujników, bloków elektronicznych i algorytmów sterowania do urządzeń, umożliwi łatwiejsze naprawy w przypadku awarii lub może przyczynić się do zwiększenia wydajności instalacji dzięki dostarczeniu do sterownika maszyny wybranych parametrów roboczych. W przypadku nieprawidłowego działania, urządzenie inteligentne może dostarczyć kody błędów. Inteligentne urządzenia mogą odbierać i wysyłać przez różne protokoły komunikacyjne (RS232, CAN, Fieldbus, Modbus) polecenia i sygnały zwrotne monitorowanych parametrów. W artykule przedstawiono budowę takiego modułu monitoringu i diagnostyki, aplikację testową oraz uzyskane wykresy

    Experimental research on a hot air generator working on the TLUD principle

    No full text
    The current paper presents the processes of data acquisition and air temperature monitoring in the key points of a hot air generator working on the TLUD principle, which uses temperature sensors, a data acquisition board and an application developed in LabView that numerically and graphically displays temperature variation during burning. The results of the monitoring were obtained on an experimental model, developed by research scientists at INOE 2000-IHP. The data acquired is then used to establish the algorithm for opening the air supply valves for gasification and combustion air, in order to optimize combustion by maintaining the optimum temperature at the funnel

    Utility vehicle with hydraulic transmission and hybrid energy source

    No full text
    Considering the EU's commitment to achieve climate neutrality by 2050, new tools and investments are needed to achieve this goal. Starting from this goal, the decision was made to develop a hybrid utility vehicle with a multifunctional role, which can also be used in closed spaces such as tunnels or underground parking lots or outside, contributing to the goal of zero carbon emsions. This machine will be the basis for the further development of an electric plug-in machine with increased autonomy. The machine will use a hybrid drive with a diesel engine and an electric motor coupled to a hydrostatic transmission in a closed circuit. The machine can work in heavy environments with a lot of dust, moisture or rugged terrain where the electric motors mounted in the wheel of the vehicle do not give very good results. The traction is done on all four wheels of the machine using wheel hydraulic motors with radial pistons. This type of engine ensures a high torque at low speeds, necessary for the types of work performed. The article presents the structure of this machine, the hydraulic scheme of the actuation, the configuration of the energy group powered by a LiFePO4 battery, through an inverter and the control system of the machine

    Experimental Research to Increase the Combustion Efficiency in the Top-Lit Updraft Principle Based Gasifier

    No full text
    The recovery of vegetal waste for energy purposes is one of the ways to increase the amount of energy obtained from renewable sources. The Top-Lit Updraft (TLUD) gasification and combustion process is recognized as the least polluting of all other combustion processes, resulting in a sterile charcoal called biochar, which can be used as an amendment in agricultural soils. The purpose of this research was to determine the influence of excess air in the combustion area compared to the (theoretical) calculated requirement for a TLUD energy module. Most scientific publications on this topic recommend primary/secondary air flow rate ratios of 1/3 or 1/4. In this study, the two recommended ratios were tested, and it was found that better energy results correspond to the ratio of 1/3. For this 1/3 ratio, the investigations continued in order to optimize the combustion process. The results achieved demonstrate that the excess combustion air flow of 30% improves the performance of the energy module due to the increase in oxygen supply and the increase in air speed in the combustion area of the syngas resulting from gasification. Increasing the excess combustion air flow rate by +50% had the effect of lowering the temperature in the flame due to the cooling of the combustion gases caused by a too high rate of excess cold air flow
    corecore