3 research outputs found
N-Acetylglutamate Synthase Deficiency Due to a Recurrent Sequence Variant in the N-acetylglutamate Synthase Enhancer Region
N-acetylglutamate synthase deficiency (NAGSD, MIM #237310) is an autosomal recessive disorder of the urea cycle that results from absent or decreased production of N-acetylglutamate (NAG) due to either decreased NAGS gene expression or defective NAGS enzyme. NAG is essential for the activity of carbamylphosphate synthetase 1 (CPS1), the first and rate-limiting enzyme of the urea cycle. NAGSD is the only urea cycle disorder that can be treated with a single drug, N-carbamylglutamate (NCG), which can activate CPS1 and completely restore ureagenesis in patients with NAGSD. We describe a novel sequence variant NM_153006.2:c.-3026C > T in the NAGS enhancer that was found in three patients from two families with NAGSD; two patients had hyperammonemia that resolved upon treatment with NCG, while the third patient increased dietary protein intake after initiation of NCG therapy. Two patients were homozygous for the variant while the third patient had the c.-3026C > T variant and a partial uniparental disomy that encompassed the NAGS gene on chromosome 17. The c.-3026C > T sequence variant affects a base pair that is highly conserved in vertebrates; the variant is predicted to be deleterious by several bioinformatics tools. Functional assays in cultured HepG2 cells demonstrated that the c.-3026C > T substitution could result in reduced expression of the NAGS gene. These findings underscore the importance of analyzing NAGS gene regulatory regions when looking for molecular causes of NAGSD
Defective hepatic bicarbonate production due to carbonic anhydrase VA deficiency leads to early-onset life-threatening metabolic crisis
PURPOSE: Four mitochondrial metabolic liver enzymes require bicarbonate, which is provided by the carbonic anhydrase isoforms VA (CAVA) and VB (CAVB). Defective hepatic bicarbonate production leads to a unique combination of biochemical findings: hyperammonemia, elevated lactate and ketone bodies, metabolic acidosis, hypoglycemia, and excretion of carboxylase substrates. This study aimed to test for CAVA or CAVB deficiencies in a group of 96 patients with early-onset hyperammonemia and to prove the disease-causing role of the CAVA variants found.
METHODS: We performed CA5A and CA5B sequencing in the described cohort and developed an expression system using insect cells, which enabled the characterization of wild-type CAVA, clinical mutations, and three variants that affect functional residues.
RESULTS: In 10 of 96 patients, mutations in CA5A were identified on both alleles but none in CA5B. Exhibiting decreased enzyme activity or thermal stability, all CAVA mutations were proven to cause disease, whereas the three variants showed no relevant effect.
CONCLUSION: CAVA deficiency is a differential diagnosis of early-onset and life-threatening metabolic crisis, with hyperammonemia, hyperlactatemia, and ketonuria as apparently obligate signs. It seems to be more common than other rare metabolic diseases, and early identification may allow specific treatment of hyperammonemia and ultimately prevent neurologic sequelae.Genet Med 18 10, 991-1000