115 research outputs found

    Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface

    Get PDF
    Background: For the translation of noninvasive motor imagery (MI)-based brain-computer interfaces (BCIs) from the lab environment to end users at their homes, their handling must be improved. As a key component, the number of electroencephalogram (EEG)-recording electrodes has to be kept at a minimum. However, due to inter-individual anatomical and physiological variations, reducing the number of electrodes bares the risk of electrode misplacement, which will directly translate into a limited BCI performance of end users. The aim of the study is to evaluate the use of focal transcranial magnetic stimulation (TMS) as an easy tool to individually optimize electrode positioning for a MI-based BCI. For this, the area of MI-induced mu-rhythm modulation was compared with the motor hand representation area in respect to their localization and to the control performance of a MI-based BCI. Methods: Focal TMS was applied to map the motor hand areas and a 48-channel high-resolution EEG was used to localize MI-induced mu-rhythm modulations in 11 able-bodied, right-handed subjects (5 male, age: 23–31). The online BCI performances of the study participants were assessed with a single next-neighbor Laplace channel consecutively placed over the motor hand area and over the area of the strongest mu-modulation. Results: For most subjects, a consistent deviation between the position of the mu-modulation center and the corresponding motor hand areas well above the localization error could be observed in mediolateral and to a lesser degree in anterior-posterior direction. On an individual level, the MI-induced mu-rhythm modulation was at average found 1.6 cm (standard deviation (SD) = 1.30 cm) lateral and 0.31 cm anterior (SD = 1.39 cm) to the motor hand area and enabled a significantly better online BCI performance than the motor hand areas. Conclusion: On an individual level a trend towards a consistent average spatial distance between motor hand area and mu-rhythm modulation center was found indicating that TMS may be used as a simple tool for quick individual optimization of EEG-recording electrode positions of MI-based BCIs. The study results indicate that motor hand areas of the primary motor cortex determined by TMS are not the main generators of the cortical mu-rhythm

    Control scheme selection in human-machine-interfaces by analysis of activity signals

    Get PDF
    Human-Machine Interfaces in rehabilitation engineering often use activity signals. Examples are electrical wheelchairs or prostheses controlled by means of muscle contractions. Activity signals are user-dependent and often reflect neurological weaknesses. Thus, not all users are able to operate the same control scheme in a robust manner. To avoid under- and overstraining, the interface ideally uses a control scheme which reflects the user’s control ability best. Therefore, we explored typical phenomena of activation signals. We derive criteria to quantify the user’s performance and abilities and present a routine which automatically selects and adapts one of three control schemes being best suited

    Influence of passive leg movements on blood circulation on the tilt table in healthy adults

    Get PDF
    BACKGROUND: One problem in the mobilization of patients with neurological diseases, such as spinal cord injury, is the circulatory collapse that occurs while changing from supine to vertical position because of the missing venous pump due to paralyzed leg muscles. Therefore, a tilt table with integrated stepping device (tilt stepper) was developed, which allows passive stepping movements for performing locomotion training in an early state of rehabilitation. The aim of this pilot study was to investigate if passive stepping and cycling movements of the legs during tilt table training could stabilize blood circulation and prevent neurally-mediated syncope in healthy young adults. METHODS: In the first experiment, healthy subjects were tested on a traditional tilt table. Subjects who had a syncope or near-syncope in this condition underwent a second trial on the tilt stepper. In the second experiment, a group of healthy subjects was investigated on a traditional tilt table, the second group on the tilt ergometer, a device that allows cycling movements during tilt table training. We used the chi-square test to compare the occurrence of near-syncope/syncope in both groups (tilt table/tilt stepper and tilt table/tilt ergometer) and ANOVA to compare the blood pressure and heart rate between the groups at the four time intervals (supine, at 2 minutes, at 6 minutes and end of head-up tilt). RESULTS: Separate chi-square tests performed for each experiment showed significant differences in the occurrence of near syncope or syncope based on the device used. Comparison of the two groups (tilt stepper/ tilt table) in experiment one (ANOVA) showed that blood pressure was significantly higher at the end of head-up tilt on the tilt stepper and on the tilt table there was a greater increase in heart rate (2 minutes after head-up tilt). Comparison of the two groups (tilt ergometer/tilt table) in experiment 2 (ANOVA) showed that blood pressure was significantly higher on the tilt ergometer at the end of head-up tilt and on the tilt table the increase in heart rate was significantly larger (at 6 min and end of head-up tilt). CONCLUSIONS: Stabilization of blood circulation and prevention of benign syncope can be achieved by passive leg movement during a tilt table test in healthy adults

    Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients

    Get PDF
    Background: Walking disabilities negatively affect inclusion in society and quality of life and increase the risk for secondary complications. It has been shown that external feedback applied by therapists and/or robotic training devices enables individuals with gait abnormalities to consciously normalize their gait pattern. However, little is known about the effects of a technically-assisted over ground feedback therapy. The aim of this study was to assess whether automatic real-time feedback provided by a shoe-mounted inertial-sensor-based gait therapy system is feasible in individuals with gait impairments after incomplete spinal cord injury (iSCI), stroke and in the elderly. Methods: In a non-controlled proof-of-concept study, feedback by tablet computer-generated verbalized instructions was given to individuals with iSCI, stroke and old age for normalization of an individually selected gait parameter (stride length, stance or swing duration, or foot-to-ground angle). The training phase consisted of 3 consecutive visits. Four weeks post training a follow-up visit was performed. Visits started with an initial gait analysis (iGA) without feedback, followed by 5 feedback training sessions of 2–3 min and a gait analysis at the end. A universal evaluation and FB scheme based on equidistant levels of deviations from the mean normal value (1 level = 1 standard deviation (SD) of the physiological reference for the feedback parameter) was used for assessment of gait quality as well as for automated adaptation of training difficulty. Overall changes in level over iGAs were detected using a Friedman’s Test. Post-hoc testing was achieved with paired Wilcoxon Tests. The users’ satisfaction was assessed by a customized questionnaire. Results: Fifteen individuals with iSCI, 11 after stroke and 15 elderly completed the training. The average level at iGA significantly decreased over the visits in all groups (Friedman’s test, p < 0.0001), with the biggest decrease between the first and second training visit (4.78 ± 2.84 to 3.02 ± 2.43, p < 0.0001, paired Wilcoxon test). Overall, users rated the system’s usability and its therapeutic effect as positive. Conclusions: Mobile, real-time, verbalized feedback is feasible and results in a normalization of the feedback gait parameter. The results form a first basis for using real-time feedback in task-specific motor rehabilitation programs. Trial registration: DRKS00011853 , retrospectively registered on 2017/03/23

    A Comprehensive Framework for the Modelling of Cartesian Force Output in Human Limbs

    Get PDF
    Neuromuscular functional electrical stimulation represents a valid technique for functional rehabilitation or, in the form of a neuroprosthesis, for the assistance of neurological patients. However, the selected stimulation of single muscles through surface electrodes remains challenging particularly for the upper extremity. In this paper, we present the MyoCeption, a comprehensive setup, which enables intuitive modeling of the user’s musculoskeletal system, as well as proportional stimulation of the muscles with 16-bit resolution through up to 10 channels. The system can be used to provide open-loop force control, which, if coupled with an adequate body tracking system, can be used to implement an impedance control where the control loop is closed around the body posture. The system is completely self-contained and can be used in a wide array of scenarios, from rehabilitation to VR to teleoperation. Here, the MyoCeption’s control environment has been experimentally validated through comparison with a third-party simulation suite. The results indicate that the musculoskeletal model used for the MyoCeption provides muscle geometries that are qualitatively similar to those computed in the baseline model

    Ulnar nerve integrity predicts 1-year outcome in cervical spinal cord injury

    Get PDF
    Background: Accurate predictors of neurological recovery after cervical spinal cord injury are needed. Particularly, to tailor adequate rehabilitation plans. However, objective and quantifiable predictors are sparse. Methods: Within the prospective European Multicenter Study about Spinal Cord Injury (EMSCI) registry, cervical spinal cord injury patients are monitored at fixed follow up visits (2, 4, 12, 24, and 48 weeks after injury) clinically and with ulnar nerve electroneurography. Associations of ulnar nerve compound muscle action potential amplitudes (CMAP) with American Spinal Cord Injury Association (ASIA) impairment scale (AIS) grades over time were analyzed using linear mixed modeling. Applying logistic regression, the prognostic value of within 4-week ulnar nerve CMAP for 1-year AIS was analyzed. To account for missing data, (1) last observation carried forward and (2) multiple imputation methods were applied. For model derivation, our centers’ cohort (EMSCI-HD) was analyzed. For model validation the cohort of other centers (EMSCI-nonHD) was used. Results: In the EMSCI-HD cohort, the median age (interquartile range (IQR)) was 52 (34–67) years. 58% were male. The initial AIS distribution was: A = 31%, B = 17%, C = 30%, and D = 22%). In the EMSCI-nonHD cohort, the median age was 49 (32–65) years. Compared to the EMSCI-HD cohort more patients were male (79%, p = 0.0034). The AIS distribution was: A = 33%, B = 13%, C = 21%, and D = 33%). In complete-case mixed model analyses (EMSCI-HD: n = 114; EMSCI-nonHD: n = 508) higher ulnar nerve CMAP were associated with better AIS grades over the entire follow up period. In complete-case logistic regression (EMSCI-HD: n = 90; EMSCI-nonHD: n = 444) higher ulnar nerve CMAP was an independent predictor of better AIS grades. The odds ratio for within 4-week ulnar nerve CMAP to predict 1-year AIS grade D versus A-C in the EMSCI-HD cohort was 1.24 per millivolt (confidence interval 1.07–1.44). The model was validated in an independent cervical spinal cord injury (EMSCI-nonHD) cohort (odds ratio 1.09, confidence interval 1.03–1.17). Conclusions: In cervical spinal cord injury, the consideration of early ulnar nerve CMAP improves prognostic accuracy, which is of particular importance in patients with clinical grading uncertainties

    Lower Motoneuron Dysfunction Impacts Spontaneous Motor Recovery in Acute Cervical Spinal Cord Injury.

    Get PDF
    Paresis after spinal cord injury (SCI) is caused by damage to upper and lower motoneurons (LMNs) and may differentially impact neurological recovery. This prospective monocentric longitudinal observational study investigated the extent and severity of LMN dysfunction and its impact on upper extremity motor recovery after acute cervical SCI. Pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials recorded by needle electromyography (EMG) were taken as parameters for LMN dysfunction and its relation to the extent of myelopathy in the first available spine magnetic resonance imaging (MRI) was determined. Motor recovery was assessed by standardized neurological examination within the first four weeks (acute stage) and up to one year (chronic stage) after injury. Eighty-five muscles of 17 individuals with cervical SCI (neurological level of injury from C1 to C7) and a median age of 54 (28-59) years were examined. The results showed that muscles with signs of LMN dysfunction peaked at the lesion center (Χ2 [2, n = 85] = 6.6, p = 0.04) and that the severity of LMN dysfunction correlated with T2-weighted hyperintense MRI signal changes in routine spine MRI at the lesion site (Spearman ρ = 0.31, p = 0.01). Muscles exhibiting signs of LMN dysfunction, as indicated by pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials, were associated with more severe paresis in both the acute and chronic stages after SCI (Spearman ρ acute = -0.22, p = 0.04 and chronic = -0.31, p = 0.004). Moreover, the severity of LMN dysfunction in the acute stage was also associated with a greater degree of paresis (Spearman ρ acute = -0.24, p = 0.03 and chronic = -0.35, p = 0.001). While both muscles with and without signs of LMN dysfunction were capable of regaining strength over time, those without LMN dysfunctions had a higher potential to reach full strength. Muscles with signs of LMN dysfunction in the acute stage displayed increased amplitudes of motor unit action potentials with chronic-stage needle EMG, indicating reinnervation through peripheral collateral sprouting as compensatory mechanism (Χ2 [1, n = 72] = 4.3, p = 0.04). Thus, LMN dysfunction represents a relevant factor contributing to motor impairment and recovery in acute cervical SCI. Defined recovery mechanisms (peripheral reinnervation) may at least partially underlie spontaneous recovery in respective muscles. Therefore, assessment of LMN dysfunction could help refine prediction of motor recovery after SCI

    Differences in Characteristics of Error-Related Potentials Between Individuals With Spinal Cord Injury and Age- and Sex-Matched Able-Bodied Controls

    Get PDF
    Background: Non-invasive brain-computer interfaces (BCI) represent an emerging technology for enabling persons with impaired or lost grasping and reaching functions due to high spinal cord injury (SCI) to control assistive devices. A major drawback of BCIs is a high rate of false classifications. The robustness and performance of BCIs might be improved using cerebral electrophysiological correlates of error recognition (error-related potentials, ErrPs). As ErrPs have never been systematically examined in subjects with SCI, this study compares the characteristics of ErrPs in individuals with SCI with those of able-bodied control subjects.Methods: ErrPs at FCz and Cz were analyzed in 11 subjects with SCI (9 male, median age 28 y) and in 11 sex- and age-matched controls. Moving a shoulder joystick according to a visual cue, subjects received feedback about the match/mismatch of the performed movement. ErrPs occurring after “error”-feedback were evaluated by comparing means of voltage values within three consecutive time windows after feedback (wP1, wN1, wP2 containing peak voltages P1, N1, P2) using repeated-measurement analysis of variance.Results: In the control group, mean voltage values for the “error” and “correct” feedback condition differed significantly around N1 (FCz: 254 ms, Cz: 252 ms) and P2 (FCz: 347 ms, Cz: 345 ms), but not around P1 (FCz: 181 ms, Cz: 179 ms). ErrPs of the control and the SCI group showed similar morphology, however mean amplitudes of ErrPs were significantly smaller in individuals with SCI compared to controls for wN1 (FCz: control = −1.55 μV, SCI = −0.27 μV, p = 0.02; Cz: control = −1.03 μV, SCI = 0.11 μV, p = 0.04) and wP2 (FCz: control = 2.79 μV, SCI = 1.29 μV, p = 0.011; Cz: control = 2.12 μV, SCI = 0.81 μV, p = 0.003). Mean voltage values in wP1, wN1, and wP2 did not correlate significantly with either chronicity after or level of injury.Conclusion: The morphology of ErrPs in subjects with and without SCI is comparable, however, with reduced mean amplitude in wN1 and wP2 in the SCI group. Further studies should evaluate whether ErrP-classification can be used for online correction of false BCI-commands in individuals with SCI

    Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury : a framework towards the standardisation of clinical evaluations

    Get PDF
    Robotic lower-limb exoskeletons have the potential to provide additional clinical benefits for persons with spinal cord injury (SCI). However, high variability between protocols does not allow the comparison of study results on safety and feasibility between different exoskeletons. We therefore incorporated key aspects from previous studies into our study protocol and accordingly conducted a multicentre study investigating the safety, feasibility and usability of the ABLE Exoskeleton in clinical settings. In this prospective pretest-posttest quasi-experimental study across two SCI centres in Germany and Spain, in- and outpatients with SCI were recruited into a 12-session training and assessment protocol, utilising the ABLE Exoskeleton. A follow-up visit after 4 weeks was included to assess after-training outcomes. Safety outcomes (device-related adverse events (AEs), number of drop-outs), feasibility and usability measures (level of assistance, donning/doffing-time) were recorded at every session together with changes in gait parameters and function. Patient-reported outcome measures including the rate of perceived exertion (RPE) and the psychosocial impact of the device were performed. Satisfaction with the device was evaluated in both participants and therapists. All 24 participants (45 ± 12 years), with mainly subacute SCI (< 1 year after injury) from C5 to L3, (ASIA Impairment Scale A to D) completed the follow-up. In 242 training sessions, 8 device-related AEs (pain and skin lesions) were reported. Total time for don and doff was 6:50 ± 2:50 min. Improvements in level of assistance and gait parameters (time, steps, distance and speed, p < 0.05) were observed in all participants. Walking function and RPE improved in participants able to complete walking tests with (n = 9) and without (n = 6) the device at study start (p < 0.05). A positive psychosocial impact of the exoskeleton was reported and the satisfaction with the device was good, with best ratings in safety (participants), weight (therapists), durability and dimensions (both). Our study results prove the feasibility of safe gait training with the ABLE Exoskeleton in hospital settings for persons with SCI, with improved clinical outcomes after training. Our study protocol allowed for consistent comparison of the results with other exoskeleton trials and can serve as a future framework towards the standardisation of early clinical evaluations. Trial Registration , DRKS00023503, retrospectively registered on November 18, 2020. The online version contains supplementary material available at 10.1186/s12984-023-01165-0
    corecore