14 research outputs found

    Functional classification of TP53 mutations in acute myeloid leukemia

    Get PDF
    Mutations of the gene occur in a subset of patients with acute myeloid leukemia (AML) and confer an exceedingly adverse prognosis. However, whether different types of mutations exert a uniformly poor outcome has not been investigated yet. Here, we addressed this issue by analyzing data of 1537 patients intensively treated within protocols of the German-Austrian AML study group. We classified mutations depending on their impact on protein structure and according to the evolutionary action (EAp53) score and the relative fitness score (RFS). In 98/1537 (6.4%) patients, 108 mutations were detected. While the discrimination depending on the protein structure and the EAp53 score did not show a survival difference, patients with low-risk and high-risk AML-specific RFS showed a different overall survival (OS; median, 12.9 versus 5.5 months, = 0.017) and event-free survival (EFS; median, 7.3 versus 5.2 months, = 0.054). In multivariable analyses adjusting for age, gender, white blood cell count, cytogenetic risk, type of AML, and TP53 variant allele frequency, these differences were statistically significant for both OS (HR, 2.14; 95% CI, 1.15-4.0; = 0.017) and EFS (HR, 1.97; 95% CI, 1.06-3.69; = 0.033). We conclude that the AML-specific RFS is of prognostic value in patients with TP53-mutated AML and a useful tool for therapeutic decision-making

    Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia

    No full text
    INTRODUCTION: The majority of patients with acute myeloid leukemia (AML) are older and exhibit a poor prognosis even after intensive therapy. Inducing differentiation and apoptosis of leukemic blasts by DNA-hypomethylating agents, like e.g. azacytidine (AZA) and decitabine (DAC), represent well-tolerated alternative treatment approaches. Both agents show convincing response as single agents in AML. However, there is a lack of knowledge regarding molecular mechanisms and predictive biomarkers for these agents. AREAS COVERED: This review will (i) provide an overview of the current knowledge of molecular mechanisms underlying the action of these drugs, (ii) report promising predictive biomarkers, (iii) elude on new combined treatment options, and (iv) discuss novel approaches to improve outcomes. A literature search was performed using PubMed to find recent major publications, which provide biological and clinical research about epigenetic therapy in AML patients. EXPERT COMMENTARY: Numerous studies have demonstrated that HMA therapy with AZA or DAC may lead to significant response rates, even in pre-treated patients. Nevertheless, there is still an unmet need to further improve outcome in elderly AML patients. Therefore, novel treatment combinations are needed and some of them, such as AZA plus venetoclax, already show promising results

    The retinoic acid receptor co-factor NRIP1 is uniquely upregulated and represents a therapeutic target in acute myeloid leukemia with chromosome 3q rearrangements

    No full text
    Aberrant expression of Ecotropic Viral Integration Site 1 (EVI1) is a hallmark of acute myeloid leukemia (AML) with inv(3) or t(3;3), which is a disease subtype with especially poor outcome. In studying transcriptomes from AML patients with chromosome 3q rearrangements, we identified a significant upregulation of the Nuclear Receptor Interacting Protein 1 (NRIP1) as well as its adjacent non-coding RNA LOC101927745. Utilizing transcriptomic and epigenomic data from over 900 primary patient samples as well as genetic and transcriptional engineering approaches, we have identified several mechanisms that can lead to upregulation of NRIP1 in AML. We hypothesize that the LOC101927745 transcription start site harbors a context-dependent enhancer that is bound by EVI1, causing upregulation of NRIP1 in AML with chr3 abnormalities. Furthermore, we show that NRIP1 knockdown negatively affects the proliferation and survival of 3q-rearranged AML cells and increases their sensitivity towards ATRA, suggesting that NRIP1 is relevant for the pathogenesis of inv(3)/t(3;3) AML and could serve as a novel therapeutic target in myeloid malignancies with 3q abnormalities

    Therapeutic targeting of preleukemia cells in a mouse model of mutant acute myeloid leukemia

    No full text
    The initiating mutations that contribute to cancer development are sometimes present in premalignant cells. Whether therapies targeting these mutations can eradicate premalignant cells is unclear. Acute myeloid leukemia (AML) is an attractive system for investigating the effect of preventative treatment because this disease is often preceded by a premalignant state (clonal hematopoiesis or myelodysplastic syndrome). In mutant knock-in mice, a model of AML development, leukemia is preceded by a period of extended myeloid progenitor cell proliferation and self-renewal. We found that this self-renewal can be reversed by oral administration of a small molecule (VTP-50469) that targets the MLL1-Menin chromatin complex. These preclinical results support the hypothesis that individuals at high risk of developing AML might benefit from targeted epigenetic therapy in a preventative setting

    AML with complex karyotype: extreme genomic complexity revealed by combined long-read sequencing and Hi-C technology

    No full text
    Acute myeloid leukemia with complex karyotype (CK-AML) is associated with poor prognosis, which is only in part explained by underlying TP53 mutations. Especially in the presence of complex chromosomal rearrangements, such as chromothripsis, the outcome of CK-AML is dismal. However, this degree of complexity of genomic rearrangements contributes to the leukemogenic phenotype and treatment resistance of CK-AML remains largely unknown. Applying an integrative workflow for the detection of structural variants (SVs) based on Oxford Nanopore (ONT) genomic DNA long-read sequencing (gDNA-LRS) and high-throughput chromosome confirmation capture (Hi-C) in a well-defined cohort of CK-AML identified regions with an extreme density of SVs. These rearrangements consisted to a large degree of focal amplifications enriched in the proximity of mammalian-wide interspersed repeat (MIR) elements, which often result in oncogenic fusion transcripts, such as USP7::MVD, or the deregulation of oncogenic driver genes as confirmed by RNA-seq and ONT direct cDNA sequencing. We termed this novel phenomenon chromocataclysm. Thus, our integrative SV detection workflow combing gDNA-LRS and Hi-C enables to unravel complex genomic rearrangements at a very high resolution in regions hard to analyze by conventional sequencing technology, thereby providing an important tool to identify novel important drivers underlying cancer with complex karyotypic changes

    Genomic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication

    No full text
    Core-binding factor (CBF) acute myeloid leukemia (AML) encompasses AML with inv(16)(p13.1q22) and AML with t(8;21)(q22;q22.1). Despite sharing a common pathogenic mechanism involving rearrangements of the CBF transcriptional complex, there is growing evidence for considerable genotypic heterogeneity. We comprehensively characterized the mutational landscape of 350 adult CBF-AML [inv(16): n = 160, t(8;21): n = 190] performing targeted sequencing of 230 myeloid cancer-associated genes. Apart from common mutations in signaling genes, mainly NRAS, KIT, and FLT3, both CBF-AML entities demonstrated a remarkably diverse pattern with respect to the underlying cooperating molecular events, in particular in genes encoding for epigenetic modifiers and the cohesin complex. In addition, recurrent mutations in novel collaborating candidate genes such as SRCAP (5% overall) and DNM2 (6% of t(8;21) AML) were identified. Moreover, aberrations altering transcription and differentiation occurred at earlier leukemic stages and preceded mutations impairing proliferation. Lasso-penalized models revealed an inferior prognosis for t(8;21) AML, trisomy 8, as well as FLT3 and KIT exon 17 mutations, whereas NRAS and WT1 mutations conferred superior prognosis. Interestingly, clonal heterogeneity was associated with a favorable prognosis. When entering mutations by functional groups in the model, mutations in genes of the methylation group (ie, DNMT3A, TET2) had a strong negative prognostic impact
    corecore