4 research outputs found
Effectiveness of hybrid robotic rehabilitation system on upper limb recovery of people with central injuries: a systematic review with meta-analysis
The systematic review requires a strict methodology and the best practice is to create and register a protocol, since the systematic review with design and compliance with the protocol has better quality and has less risk for reporting bias. Protocols include the research question, team members, search strategy, databases to search, inclusion and exclusion criteria, quality assessment tool, data extraction template, software, and more. Thereby, the systematic review developed by the CAMIN team “Effectiveness of hybrid robotic rehabilitation system on upper limb recovery of people with central injuries: a systematic review with meta-analysis” created a protocol and published it in the International Prospective Register of Systematic Reviews - PROSPERO an international database of prospectively registered systematic reviews in health and social care. PROSPERO aims to provide a comprehensive listing of systematic reviews registered at inception, to help to avoid unplanned duplication, and to provide transparency in the review process to minimize reporting bias by enabling comparison of the completed review with what was planned in the protocol. Registration in PROSPERO involves the submission and publication of key information about the design and conduct of a systematic review. Key features from the review protocol are recorded and maintained as a permanent record in PROSPERO and records are published on an open-access electronic database. This online database is produced by Centre for Reviews and Dissemination (CRD) at the University of York in England and funded by the National Institute for Health Research (NIHR).Previous studies indicate that hybrid robotic rehabilitation systems (HRRS) may be more effective in improving motor control and functional skills compared to robotic therapy alone in patients with hemiparesis after chronic stroke and compared to traditional physical therapy in individuals with acute stroke. However, although studies prove the potential benefit of this technology, few randomized controlled trials have been conducted so far and no systematic literature review has been carried out. Systematic reviews are necessary because it is the most appropriate and current method for summarizing and synthesizing evidences about the effectiveness and effects of interventions. Therefore, this project investigates systematically the effects of HRRS on central injuries upper limb recovery based on each of the International Classification of Functioning, Disability and Health (ICF) domains. This study contributes to the development of new hybrid neuroprostheses that are proven to be effective for upper limb rehabilitation.This systematic review is done with the participation of physicians, occupational therapists and engineers
Development of portable robotic orthosis and biomechanical validation in people with limited upper limb function after stroke
International audienceAbstract Stroke has a considerable incidence in the world population and would cause sequelae in the upper limbs. One way to increase the efficiency in the rehabilitation process of patients with these sequelae is through robot-assisted therapy. The present study developed a portable robotic orthosis called Pinotti Portable Robotic Exoskeleton (PPRE) and validated its functioning in clinical tests. The static and dynamic parts of the device modules are described. Design issues, such as heavyweight and engine positioning, have been optimized. The implementation of control was through a smartphone application that communicates with a microcontroller to perform desired movements. Four individuals with motor impairment of the upper limbs due to stroke performed clinical tests to validate the device. Participants did not mention pain, discomfort, tingling, and paresthesia. The robotic device showed the ability to perform the flexion and extension movements of the fingers and elbow. The PPRE was confirmed to be adequate and functional at different levels of motor impairment assessed. The orthosis presented advantages over the currently existing devices, concerning its biomechanical functioning, portability, comfort, and versatility. Thus, the apparatus has the great innovative potential to become a device for home use, serving as an aid to the therapist and facilitating the rehabilitation of patients after an injury. In a larger sample, future studies are needed to assess the effect of a robotic orthosis on the level of rehabilitation in individuals with upper limb impairment
Development of a Software for the Control of a Hybrid FES–Robotic Orthosis for Upper Limb Rehabilitation
International audienc
Evaluation of Commercial Ropes Applied as Artificial Tendons in Robotic Rehabilitation Orthoses
International audienceThis study aims to present the design, selection and testing of commercial ropes (artificial tendons) used on robotic orthosis to perform the hand movements for stroke individuals over upper limb rehabilitation. It was determined the load applied in the rope would through direct measurements performed on four individuals after stroke using a bulb dynamometer. A tensile strength test was performed using eight commercial ropes in order to evaluate the maximum breaking force and select the most suitable to be used in this application. Finally, a pilot test was performed with a user of the device to ratify the effectiveness of the rope. The load on the cable was 12.38 kgf (121.4 N) in the stroke-affected hand, which is the maximum tensile force that the rope must to supports. Paragliding rope (DuPont™ Kevlar ® ) supporting a load of 250 N at a strain of 37 mm was selected. The clinical test proved the effectiveness of the rope, supporting the requested efforts, without presenting permanent deformation, effectively performing the participant’s finger opening