10 research outputs found

    Strain-induced coupling of electrical polarization and structural defects in SrMnO₃ films

    Get PDF
    Local perturbations in complex oxides, such as domain walls, strain and defects, are of interest because they can modify the conduction or the dielectric and magnetic response, and can even promote phase transitions. Here, we show that the interaction between different types of local perturbations in oxide thin films is an additional source of functionality. Taking SrMnO 3 as a model system, we use nonlinear optics to verify the theoretical prediction that strain induces a polar phase, and apply density functional theory to show that strain simultaneously increases the concentration of oxygen vacancies. These vacancies couple to the polar domain walls, where they establish an electrostatic barrier to electron migration. The result is a state with locally structured room-temperature conductivity consisting of conducting nanosized polar domains encased by insulating domain boundaries, which we resolve using scanning probe microscopy. Our 'nanocapacitor' domains can be individually charged, suggesting stable capacitance nanobits with a potential for information storage technology

    Activation and deactivation kinetics of oxygen reduction over a la 0.8Sr0.2Sc0.1Mn0.9O3 cathode

    No full text
    Electrochemical impedance spectroscopy, step current polarization, and cyclic voltammetry were applied to investigate the activation and deactivation kinetics of oxygen reduction over a novel La0.8Sr 0.2Sc0.1Mn0.9O3 (LSSM) cathode material. Oxygen vacancies were created after cathodic polarization for a certain period of time. The generating rate was closely related with oxygen partial pressure of surrounding atmosphere (Po2). polarization time, temperature, and voltage. The in situ created oxygen vacancies could propagate both over the surface and into the bulk of the LSSM electrode after a high cathodic polarization. Both chemical oxidation by ambient air and electrochemical oxidation by anodic polarization were exploited to demonstrate the deactivation mechanism of these in situ created oxygen vacancies. The rate-determining step of oxygen reduction reaction over LSSM electrode before and after the activation was also investigated. It was by oxygen ion surface diffusion at 800 °C in air, while a steady change to an electron-transfer process was observed with decreasing temperature and Po2. © 2008 American Chemical Society
    corecore