139 research outputs found

    Molecular dynamics in shape space and femtosecond vibrational spectroscopy of metal clusters

    Full text link
    We introduce a method of molecular dynamics in shape space aimed at metal clusters. The ionic degrees of freedom are described via a dynamically deformable jellium with inertia parameters derived from an incompressible, irrotational flow. The shell correction method is used to calculate the electronic potential energy surface underlying the dynamics. Our finite temperature simulations of Ag_14 and its ions, following the negative to neutral to positive scheme, demonstrate the potential of pump and probe ultrashort laser pulses as a spectroscopy of cluster shape vibrations.Comment: Latex/Revtex, 4 pages with 3 Postscript figure

    Electronic-structure-induced deformations of liquid metal clusters

    Full text link
    Ab initio molecular dynamics is used to study deformations of sodium clusters at temperatures 5001100500\cdots 1100 K. Open-shell Na14_{14} cluster has two shape isomers, prolate and oblate, in the liquid state. The deformation is stabilized by opening a gap at the Fermi level. The closed-shell Na8_8 remains magic also at the liquid state.Comment: REVTex, 11 pages, no figures, figures (2) available upon request (e-mail to hakkinen at jyfl.jyu.fi), submitted to Phys. Rev.

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.

    Charge-Induced Fragmentation of Sodium Clusters

    Get PDF
    The fission of highly charged sodium clusters with fissilities X>1 is studied by {\em ab initio} molecular dynamics. Na_{24}^{4+} is found to undergo predominantly sequential Na_{3}^{+} emission on a time scale of 1 ps, while Na_{24}^{Q+} (5 \leq Q \leq 8) undergoes multifragmentation on a time scale \geq 0.1 ps, with Na^{+} increasingly the dominant fragment as Q increases. All singly-charged fragments Na_{n}^{+} up to size n=6 are observed. The observed fragment spectrum is, within statistical error, independent of the temperature T of the parent cluster for T \leq 1500 K. These findings are consistent with and explain recent trends observed experimentally.Comment: To appear in Physical Review Letter

    Thermal expansion in small metal clusters and its impact on the electric polarizability

    Get PDF
    The thermal expansion coefficients of NaN\mathrm{Na}_{N} clusters with 8N408 \le N \le 40 and Al7\mathrm{Al}_{7}, Al13\mathrm{Al}_{13}^- and Al14\mathrm{Al}_{14}^- are obtained from {\it ab initio} Born-Oppenheimer LDA molecular dynamics. Thermal expansion of small metal clusters is considerably larger than that in the bulk and size-dependent. We demonstrate that the average static electric dipole polarizability of Na clusters depends linearly on the mean interatomic distance and only to a minor extent on the detailed ionic configuration when the overall shape of the electron density is enforced by electronic shell effects. The polarizability is thus a sensitive indicator for thermal expansion. We show that taking this effect into account brings theoretical and experimental polarizabilities into quantitative agreement.Comment: 4 pages, 2 figures, one table. Accepted for publication in Physical Review Letters. References 10 and 23 update

    Diffusion of gold nanoclusters on graphite

    Full text link
    We present a detailed molecular-dynamics study of the diffusion and coalescence of large (249-atom) gold clusters on graphite surfaces. The diffusivity of monoclusters is found to be comparable to that for single adatoms. Likewise, and even more important, cluster dimers are also found to diffuse at a rate which is comparable to that for adatoms and monoclusters. As a consequence, large islands formed by cluster aggregation are also expected to be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling law for the dependence on size of the diffusivity of large clusters, we find that islands consisting of as many as 100 monoclusters should exhibit significant mobility. This result has profound implications for the morphology of cluster-assembled materials

    Density-functional-based predictions of Raman and IR spectra for small Si clusters

    Get PDF
    We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems

    Electronic entropy, shell structure, and size-evolutionary patterns of metal clusters

    Full text link
    We show that electronic-entropy effects in the size-evolutionary patterns of relatively small (as small as 20 atoms), simple-metal clusters become prominent already at moderate temperatures. Detailed agreement between our finite-temperature-shell-correction-method calculations and experimental results is obtained for certain temperatures. This agreement includes a size-dependent smearing out of fine-structure features, accompanied by a measurable reduction of the heights of the steps marking major-shell and subshell closings, thus allowing for a quantitative analysis of cluster temperatures.Comment: Latex/Revtex, 4 pages with 3 Postscript figure

    Ionic structure and photoabsorption in medium sized sodium clusters

    Get PDF
    We present ground-state configurations and photoabsorption spectra of Na-7+, Na-27+ and Na-41+. Both the ionic structure and the photoabsorption spectra of medium-size sodium clusters beyond Na-20 have been calculated self-consistently with a nonspherical treatment of the valence electrons in density functional theory. We use a local pseudopotential that has been adjusted to experimental bulk properties and the atomic 3s level of sodium. Our studies have shown that both the ionic structure of the ground state and the positions of the plasmon resonances depend sensitively on the pseudopotential used in the calculation, which stresses the importance of its consistent use in both steps.Comment: 4 pages, 3 figures. Accepted for publication in PRB, tentatively July 15th, 1998 some typos corrected, brought to nicer forma

    Density functional study of Aun_n (n=2-20) clusters: lowest-energy structures and electronic properties

    Get PDF
    We have investigated the lowest-energy structures and electronic properties of the Aun_n(n=2-20) clusters based on density functional theory (DFT) with local density approximation. The small Aun_n clusters adopt planar structures up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a structural transition from tabular cage-like structure to compact near-spherical structure is found around n=15. The most stable configurations obtained for Au13_{13} and Au19_{19} clusters are amorphous instead of icosahedral or fcc-like, while the electronic density of states sensitively depend on the cluster geometry. Dramatic odd-even alternative behaviors are obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of gold clusters. The size evolution of electronic properties is discussed and the theoretical ionization potentials of Aun_n clusters compare well with experiments.Comment: 6 pages, 7 figure
    corecore