755 research outputs found

    Generalized Quantum Theory: Overview and Latest Developments

    Get PDF
    The main formal structures of Generalized Quantum Theory are summarized. Recent progress has sharpened some of the concepts, in particular the notion of an observable, the action of an observable on states (putting more emphasis on the role of proposition observables), and the concept of generalized entanglement. Furthermore, the active role of the observer in the structure of observables and the partitioning of systems is emphasized.Comment: 14 pages, update in reference

    The Poisson Bracket for Poisson Forms in Multisymplectic Field Theory

    Full text link
    We present a general definition of the Poisson bracket between differential forms on the extended multiphase space appearing in the geometric formulation of first order classical field theories and, more generally, on exact multisymplectic manifolds. It is well defined for a certain class of differential forms that we propose to call Poisson forms and turns the space of Poisson forms into a Lie superalgebra.Comment: 40 pages LaTe

    Interacting particles at a metal-insulator transition

    Full text link
    We study the influence of many-particle interaction in a system which, in the single particle case, exhibits a metal-insulator transition induced by a finite amount of onsite pontential fluctuations. Thereby, we consider the problem of interacting particles in the one-dimensional quasiperiodic Aubry-Andre chain. We employ the density-matrix renormalization scheme to investigate the finite particle density situation. In the case of incommensurate densities, the expected transition from the single-particle analysis is reproduced. Generally speaking, interaction does not alter the incommensurate transition. For commensurate densities, we map out the entire phase diagram and find that the transition into a metallic state occurs for attractive interactions and infinite small fluctuations -- in contrast to the case of incommensurate densities. Our results for commensurate densities also show agreement with a recent analytic renormalization group approach.Comment: 8 pages, 8 figures The original paper was splitted and rewritten. This is the published version of the DMRG part of the original pape

    Correlation-Strength Driven Anderson Metal-Insulator Transition

    Get PDF
    The possibility of driving an Anderson metal-insulator transition in the presence of scale-free disorder by changing the correlation exponent is numerically investigated. We calculate the localization length for quasi-one-dimensional systems at fixed energy and fixed disorder strength using a standard transfer matrix method. From a finite-size scaling analysis we extract the critical correlation exponent and the critical exponent characterizing the phase transition.Comment: 3 pages; 2 figure

    Conservation laws in the continuum 1/r21/r^2 systems

    Full text link
    We study the conservation laws of both the classical and the quantum mechanical continuum 1/r21/r^2 type systems. For the classical case, we introduce new integrals of motion along the recent ideas of Shastry and Sutherland (SS), supplementing the usual integrals of motion constructed much earlier by Moser. We show by explicit construction that one set of integrals can be related algebraically to the other. The difference of these two sets of integrals then gives rise to yet another complete set of integrals of motion. For the quantum case, we first need to resum the integrals proposed by Calogero, Marchioro and Ragnisco. We give a diagrammatic construction scheme for these new integrals, which are the quantum analogues of the classical traces. Again we show that there is a relationship between these new integrals and the quantum integrals of SS by explicit construction.Comment: 19 RevTeX 3.0 pages with 2 PS-figures include

    Enhanced Charge and Spin Currents in the One-Dimensional Disordered Mesoscopic Hubbard Ring

    Full text link
    We consider a one-dimensional mesoscopic Hubbard ring with and without disorder and compute charge and spin stiffness as a measure of the permanent currents. For finite disorder we identify critical disorder strength beyond which the charge currents in a system with repulsive interactions are {\em larger} than those for a free system. The spin currents in the disordered repulsive Hubbard model are enhanced only for small UU, where the magnetic state of the system corresponds to a charge density wave pinned to the impurities. For large UU, the state of the system corresponds to localized isolated spins and the spin currents are found to be suppressed. For the attractive Hubbard model we find that the charge currents are always suppressed compared to the free system at all length scales.Comment: 20 RevTeX 3.0 pages, 8 figures NOT include
    corecore