45 research outputs found
Ătude du rĂŽle de la silice chez le blĂ© dans l'induction des molĂ©cules de dĂ©fense lors d'une infection par le blanc
Tableau dâhonneur de la FacultĂ© des Ă©tudes supĂ©rieures et postdoctorales, 2007-2008
Silicon enhances suberization and lignification in roots of rice (Oryza sativa)
The beneficial element silicon (Si) may affect radial oxygen loss (ROL) of rice roots depending on suberization of the exodermis and lignification of sclerenchyma. Thus, the effect of Si nutrition on the oxidation power of rice roots, suberization and lignification was examined. In addition, Si-induced alterations of the transcript levels of 265 genes related to suberin and lignin synthesis were studied by custom-made microarray and quantitative Real Time-PCR. Without Si supply, the oxidation zone of 12 cm long adventitious roots extended along the entire root length but with Si supply the oxidation zone was restricted to 5 cm behind the root tip. This pattern coincided with enhanced suberization of the exodermis and lignification of sclerenchyma by Si supply. Suberization of the exodermis started, with and without Si supply, at 4â5 cm and 8â9 cm distance from the root tip (drt), respectively. Si significantly increased transcript abundance of 12 genes, while two genes had a reduced transcript level. A gene coding for a leucine-rich repeat protein exhibited a 25-fold higher transcript level with Si nutrition. Physiological, histochemical, and molecular-biological data showing that Si has an active impact on rice root anatomy and gene transcription is presented here
Histochemical aspects of wheat resistance to leaf blast mediated by silicon
Blast, caused by Pyricularia oryzae, has become a significant disease threat to wheat (Triticum aestivum L.) in Brazil. This study aimed to investigate at the histochemical level if silicon (Si) could enhance the production of flavonoids in the leaves of wheat plants in response to P. oryzae infection. Plants from the Aliança cultivar, which are susceptible to blast, were grown in hydroponic cultures containing 0 (-Si) or 2 mM of Si (+Si) and inoculated by spraying a conidial suspension of P. oryzae (1 Ă 105 conidia mLâ1) on all adaxial leaf surfaces of plants at 60 days after emergence (growth stage 65). The fourth and fifth leaves of each plant were used to evaluate blast severity at 24, 36, 48, 72 and 96 h after inoculation (hai). At 96 hai, leaves were collected from plants to determine the foliar Si concentration. For cytological observations, leaf samples were randomly collected from the fourth and fifth leaves of each plant at 72 hai. The foliar Si concentration was higher in +Si plants (36 g kgâ1) in comparison to -Si plants (2.6 g kgâ1). This increased Si concentration was correlated with reduced fungal growth inside the epidermal cells and the development of blast symptoms on leaves. Strong fluorescence, which is an indication of the presence of flavonoids, was detected in the leaf cells of +Si plants using Neuâs and Wilson's reagents. A novel item of evidence is that, at the histochemical level, Si is involved in the potentiation of the biosynthetic pathway of flavonoids that increases wheat resistance to blast
Ecological Basis of the Interaction between Pseudozyma flocculosa and Powdery Mildew Fungiâż
In this work, we sought to understand how glycolipid production and the availability of nutrients could explain the ecology of Pseudozyma flocculosa and its biocontrol activity. For this purpose, we compared the development of P. flocculosa to that of a close relative, the plant pathogen Ustilago maydis, under different environmental conditions. This approach was further supported by measuring the expression of cyp1, a pivotal gene in the synthesis of unique antifungal cellobiose lipids of both fungi. On healthy cucumber and tomato plants, the expression of cyp1 remained unchanged over time in P. flocculosa and was undetected in U. maydis. At the same time, green fluorescent protein (GFP) strains of both fungi showed only limited green fluorescence on control leaves. On powdery mildew-infected cucumber leaves, P. flocculosa induced a complete collapse of the pathogen colonies, but glycolipid production, as studied by cyp1 expression, was still comparable to that of controls. In complete contrast, cyp1 was upregulated nine times when P. flocculosa was applied to Botrytis cinerea-infected leaves, but the biocontrol fungus did not develop very well on the pathogen. Analysis of the possible nutrients that could stimulate the growth of P. flocculosa on powdery mildew structures revealed that the complex Zn/Mn played a key role in the interaction. Other related fungi such as U. maydis do not appear to have the same nutritional requirements and hence lack the ability to colonize powdery mildews. Whether production of antifungal glycolipids contributes to the release of nutrients from powdery mildew colonies is unclear, but the specificity of the biocontrol activity of P. flocculosa toward Erysiphales does appear to be more complex than simple antibiosis
Aquaporins Mediate Silicon Transport in Humans.
In animals, silicon is an abundant and differentially distributed trace element that is believed to play important biological functions. One would thus expect silicon concentrations in body fluids to be regulated by silicon transporters at the surface of many cell types. Curiously, however, and even though they exist in plants and algae, no such transporters have been identified to date in vertebrates. Here, we show for the first time that the human aquaglyceroporins, i.e., AQP3, AQP7, AQP9 and AQP10 can act as silicon transporters in both Xenopus laevis oocytes and HEK-293 cells. In particular, heterologously expressed AQP7, AQP9 and AQP10 are all able to induce robust, saturable, phloretin-sensitive silicon transport activity in the range that was observed for low silicon rice 1 (lsi1), a silicon transporter in plant. Furthermore, we show that the aquaglyceroporins appear as relevant silicon permeation pathways in both mice and humans based on 1) the kinetics of substrate transport, 2) their presence in tissues where silicon is presumed to play key roles and 3) their transcriptional responses to changes in dietary silicon. Taken together, our data provide new evidence that silicon is a potentially important biological element in animals and that its body distribution is regulated. They should open up original areas of investigations aimed at deciphering the true physiological role of silicon in vertebrates