98 research outputs found
DETERMINATION OF PHYTOCOMPONENTS IN ETHANOL EXTRACT OF BRASSICA OLERACEA - USING GAS CHROMATOGRAPHY–MASS SPECTROSCOPY TECHNIQUE
Objectives: Bioactive components determined by plants are known to have a broad application in the medical field. The focus of this study is to recognize the phytochemicals in the ethanol extract of Brassica oleracea by gas chromatography–mass spectroscopy (GC–MS). Methods: B. oleracea was collected, dried, and powdered well. The extraction was done with the solvent ethanol. The extract was exposed to column of GC-MS-QP 2010 (SHIMADZU) column Db 30.0 (0.25 μm in diameter, 0.25 μm thick). Results: GC–MS result provides the chromatogram with different peaks obtained at a different retention time shows the presence of various biocompounds. Some of the identified bioactive compounds are n-hexadecanoic acid (12.99%), phytol (2.40%), Vitamin E (3.38%), tetratetracontane (2.15%), stigmasterol (2.03%), and isophytol. Conclusion: The GC–MS study of the ethanol extract of B. oleracea reveals the existence of many potential compounds that can be utilized in the pharmaceutical industry, including the use of anti-inflammatory, antiarthritic, anticoronary, and antidiabetic agents
Design and Implementation of Image Compression Encoder using Orthogonal Approximation DCT
Image Compression is usually carried out using discrete cosine transform (DCT) because compressed image using DCT will take less memory to store the image and quality of the image will be good compared JPEG and HEVC. But, in this work an attempt is made to achieve compression using Approximation DCT (ADCT). ADCT is useful for reducing its computational complexity without affecting its coding performance. It provides better image and video compression compared to the DCT. ADCT is orthogonal and it has lower structural complexity compared to DCT. The unique feature of the ADCT is that it could be configured for the computation of the 32 point ADCT or for parallel computation of two16 point ADCTs or four 8 points ADCTs. It has many advantages in terms of orthogonality, structural simplicity and lower computational complexity. The proposed ADCT is implemented using Verilog and Simulated by ModelSim and synthesized by Xilinx ISE 9.1i. Results are compared with 16 point ADCT with 16 point DCT implementation. The target device is XC5vtx330t-2ff1738. The 16 point ADCT implementation results in a saving of 28.37% IOBs and 63% of LUTs, compared to existing 16 point DCT implementation
Rhodium Doped Manganites : Ferromagnetism and Metallicity
The possibility to induce ferromagnetism and insulator to metal transitions
in small A site cation manganites Ln_{1-x}Ca_xMnO_3 by rhodium doping is shown
for the first time. Colossal magnetoresistance (CMR) properties are evidenced
for a large compositional range (0.35 \leq x < 0.60). The ability of rhodium to
induce such properties is compared to the results obtained by chromium and
ruthenium doping. Models are proposed to explain this behavior.Comment: 11 pages, 8 figure
Electronic phase separation in the rare earth manganates, (La1-xLnx)0.7Ca0.3MnO3 (Ln = Nd, Gd and Y)
All the three series of manganates showsaturation magnetization
characteristic of ferromagnetism, with the ferromagnetic Tc decreasing with
increasing in x up to a critical value of x, xc (xc = 0.6, 0.3, 0.2
respectively for Nd, Gd, Y). For x > xc, the magnetic moments are considerably
smaller showing a small increase around TM, the value of TM decreasing slightly
with increase in x or decrease in . The ferromagnetic compositions (x xc)
show insulator-metal (IM) transitions, while the compositions with x > xc are
insulating. The magnetic and electrical resistivity behavior of these
manganates is consistent with the occurrence of phase separation in the
compositions around xc, corresponding to a critical average radius of the
A-site cation, , of 1.18 A. Both Tc and TIM increase linearly when < rA
> > or x xc as expected of a homogenous ferromagnetic phase. Both Tc
and TM decrease linearly with the A-site cation size disorder at the A-site as
measured by the variance s2. Thus, an increase in s2 favors the insulating AFM
state. Percolative conduction is observed in the compositions with > <
rAc >. Electron transport properties in the insulating regime for x > xc
conforms to the variable range hopping mechanism. More interestingly, when x >
xc, the real part of dielectric constant (e') reaches a high value (104-106) at
ordinary temperatures dropping to a very small (~500) value below a certain
temperature, the value of which decreases with decreasing frequency.Comment: 27 pages; 11 figures, Submitted to J.Phys:Condens Matte
Antimicrobial and antioxidant activities of salt stress callus of Brinjal (Solanum melongena L.)
Ethanolic and methanolic salt stress callus extracts of Solanum melongena L. were tested for in vitro antimicrobial and free radical scavenging assayssuch as DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS+(2,2\u27Azinobis (3-ethyl benzo-thizoline-6-sulfonic acid) . In both the extracts the zone of inhibition is higher in Escherichia coli, Klebsiella pneumonia, Staphylococcus aureusand Streptococcus pyogenesat 90 µl concentration against the control. The antifungal activity of these extracts also the zone of inhibition is higher at 90 µl concentration against the control. The DPPH activity of different concentration of solvent extracts (1 mg/ml to 5 mg/ml) along with standard ascorbic acid among the five different concentration (50 µg/ml to 250 µg/ml) of extracts tested, the higher percentage of inhibition was observed in 250 µg/ml of methanol extract followed by ethanolic extract against the standard ascorbic acid. In ABTS+ activity the absorbance was increased with the increasing concentrations of both methanolic and ethanolic callus extracts
Monitoring vegetation dynamics using multi-temporal Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images of Tamil Nadu
Vegetation indices serve as an essential tool in monitoring variations in vegetation. The vegetation indices used often, viz., normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) were computed from MODIS vegetation index products. The present study aimed to monitor vegetation's seasonal dynamics by using time series NDVI and EVI indices in Tamil Nadu from 2011 to 2021. Two products characterize the global range of vegetation states and processes more effectively. The data sources were processed and the values of NDVI and EVI were extracted using ArcGIS software. There was a significant difference in vegetation intensity and status of vegetation over time, with NDVI having a larger value than EVI, indicating that biomass intensity varies over time in Tamil Nadu. Among the land cover classes, the deciduous forest showed the highest mean values for NDVI (0.83) and EVI (0.38), followed by cropland mean values of NDVI (0.71) and EVI (0.31) and the lowest NDVI (0.68) and EVI (0.29) was recorded in the scrubland. The study demonstrated that vegetation indices extracted from MODIS offered valuable information on vegetation status and condition at a short temporal time period
Crystal structures and magnetic order of La{0.5+delta}A{0.5-delta}Mn{0.5+epsilon}Ru{0.5-epsilon}O{3} (A= Ca, Sr, Ba): Possible orbital glass ferromagnetic state
The crystallographic and magnetic properties of
La{0.5+delta}A{0.5-delta}Mn{0.5+epsilon}Ru{0.5-epsilon}O{3} (A= Ca, Sr, Ba)
were investigated by means of neutron powder diffraction. All studied samples
show the orthorhombic perovskite crystal structure, space group Pnma, with
regular (Mn,Ru)O{6} octahedra and no chemical ordering of the Mn3+ and Ru4+
ions. Ferromagnetic spin structures were observed below Tc ~ 200-250 K, with an
average ordered moment of ~ 1.8-2.0 Bohr magnetons per (Mn,Ru). The observation
of long-range ferromagnetism and the absence of orbital ordering are
rationalized in terms a strong Mn-Ru hybridization, which may freeze the
orbital degree of freedom and broaden the eg valence band, leading to an
orbital-glass state with carrier-mediated ferromagnetism
Variazioni sul tema della prigionia: La Captive di Chantal Akerman.
Properties of the hole-doped Ln1−xAxMnO3 (Ln=rare earth, A=alkaline earth, x<0.5) are compared with those of the electron-doped compositions (x>0.5). Charge ordering is the dominant interaction in the latter class of manganates unlike ferromagnetism and metallicity in the hole-doped materials. Properties of charge-ordered (CO) compositions in the hole- and electron-doped regimes, Pr0.64Ca0.36MnO3 and Pr0.36Ca0.64MnO3, differ markedly. Thus, the CO state in the hole-doped Pr0.64Ca0.36MnO3 is destroyed by magnetic fields and by substitution of Cr3+ or Ru4+ (3%) in the Mn site, while the CO state in the electron-doped Pr0.36Ca0.64MnO3 is essentially unaffected. It is not possible to induce long-range ferromagnetism in the electron-doped manganates by increasing the Mn-O-Mn angles up to 165 and 180° as in La0.33Ca0.33Sr0.34MnO3; application of magnetic fields and Cr/Ru substitution (3%) do not result in long-range ferromagnetism and metallicity. Application of magnetic fields on the Cr/Ru-doped, electron-doped manganates also fails to induce metallicity. These unusual features of the electron-doped manganates suggest that the electronic structure of these materials is likely to be entirely different from that of the hole-doped ones, as verified by first-principles linearized muffin-tin orbital calculations
Treatment of synthetic textile wastewater containing dye mixtures with microcosms
The aim was to assess the ability of microcosms (laboratory-scale shallow ponds) as a post polishing stage for the remediation of artificial textile wastewater comprising two commercial dyes (basic red 46 (BR46) and reactive blue 198 (RB198)) as a mixture. The objectives were to evaluate the impact of Lemna minor L. (common duckweed) on the water quality outflows; the elimination of dye mixtures, organic matter, and nutrients; and the impact of synthetic textile wastewater comprising dye mixtures on the L. minor plant growth. Three mixtures were prepared providing a total dye concentration of 10 mg/l. Findings showed that the planted simulated ponds possess a significant (p < 0.05) potential for improving the outflow characteristics and eliminate dyes, ammonium-nitrogen (NH4-N), and nitrate-nitrogen (NO3-N) in all mixtures compared with the corresponding unplanted ponds. The removal of mixed dyes in planted ponds was mainly due to phyto-transformation and adsorption of BR46 with complete aromatic amine mineralisation. For ponds containing 2 mg/l of RB198 and 8 mg/l of BR46, removals were around 53%, which was significantly higher than those for other mixtures: 5 mg/l of RB198 and 5 mg/l of BR46 and 8 mg/l of RB198 and 2 mg/l of BR46 achieved only 41 and 26% removals, respectively. Dye mixtures stopped the growth of L. minor, and the presence of artificial wastewater reduced their development
- …