71,112 research outputs found

    Assessing the need for neutralizing KCl filter testing aerosol

    Get PDF
    American Association for Aerosol Research 28th Annual Conference, Minneapolis (MN), 26-30 October 2009, Abstract #81

    Neotropical Cerambycidae (Coleoptera) primarily in the Canadian Museum of Nature, Ottawa. I. Falsamblesthiini (Lamiinae)

    Get PDF
    The following new species are described: Nyctonympha andersoni, sp. n., and N. howdenarum, sp. n., both from Colombia; N. genieri, sp. n., from Ecuador; N. taeniata, sp. n., from Trinidad; Falsamblesthis microps, sp. n., from Venezuela; Bactriola circundata, sp. n., from Brazil (Rio de Janeiro); B. maculata, sp. n., from Venezuela and Ecuador; and B. falsa, sp. n., from Brazil (Minas Gerais to Rio Grande do Sul). A redescription of Bactriola vittulata Bates, 1886, herein designated as the type species of the genus, is provided. Accurate data on the occurrence of Saepiseuthes chilensis Thomson, 1868, in Chile are given. Keys to the species of Bactriola Bates, 1886 and Nyctonympha Thomson, 1868 are added

    DInSAR deformation time series for monitoring urban areas: The impact of the second generation SAR systems

    Get PDF
    We investigate the capability improvement of the DInSAR techniques to map deformation phenomena affecting urban areas, by performing a comparative analysis of the deformation time series retrieved by applying the full resolution Small BAseline Subset (SBAS) DInSAR technique to selected sequences of SAR data acquired by the ENVISAT, RADARSAT-1 and COSMO-SkyMed (CSK) SAR data. The presented study, focused on the city of Napoli (Italy), allows us to quantify the dramatic increase of the DInSAR coherent pixel density achieved by exploiting the high resolution X-Band CSK SAR images with respect to the RADARSAT-1 and ENVISAT products, respectively; this permits us to analyze nearly all the structures located within the investigated urbanized area and, in many cases, also portions of a same building. © 2012 IEEE

    Analysis of Hydrogen Cyanide Hyperfine Spectral Components towards Star Forming Cores

    Full text link
    Although hydrogen cyanide has become quite a common molecular tracing species for a variety of astrophysical sources, it, however, exhibits dramatic non-LTE behaviour in its hyperfine line structure. Individual hyperfine components can be strongly boosted or suppressed. If these so-called hyperfine line anomalies are present in the HCN rotational spectra towards low or high mass cores, this will affect the interpretation of various physical properties such as the line opacity and excitation temperature in the case of low mass objects and infall velocities in the case of their higher mass counterparts. This is as a consequence of the direct effects that anomalies have on the underlying line shape, be it with the line structural width or through the inferred line strength. This work involves the first observational investigation of these anomalies in two HCN rotational transitions, J=1!0 and J=3!2, towards both low mass starless cores and high mass protostellar objects. The degree of anomaly in these two rotational transitions is considered by computing the ratios of neighboring hyperfine lines in individual spectra. Results indicate some degree of anomaly is present in all cores considered in our survey, the most likely cause being line overlap effects among hyperfine components in higher rotational transitions.Comment: 8th Serbian Conference on Spectral Line Shapes in Astrophysics, Divicibare; 8 pages, 5 figure

    Diffusion of multiple species with excluded-volume effects

    Get PDF
    Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing Brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results

    Greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness penalties

    Get PDF
    In this paper, we present greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, and no machine idle time. The several heuristic versions differ, on the one hand, on the strategies involved in the construction of the greedy randomized schedules. On the other hand, these versions also differ on whether they employ only a final improvement step, or perform a local search after each greedy randomized construction. The proposed heuristics were compared with existing procedures, as well as with optimum solutions for some instance sizes. The computational results show that the proposed procedures clearly outperform their underlying dispatching heuristic, and the best of these procedures provide results that are quite close to the optimum. The best of the proposed algorithms is the new recommended heuristic for large instances, as well as a suitable alternative to the best existing procedure for the larger of the middle size instances.scheduling, single machine, early/tardy, quadratic penalties, greedy randomized dispatching rules

    Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes

    Get PDF
    Slow earthquakes represent an important conundrum in earthquake physics. While regular earthquakes are catastrophic events with rupture velocities governed by elastic wave speed, the processes that underlie slow fault slip phenomena, including recent discoveries of tremor, slow-slip and low-frequency earthquakes, are less understood. Theoretical models and sparse laboratory observations have provided insights, but the physics of slow fault rupture remain enigmatic. Here we report on laboratory observations that illuminate the mechanics of slow-slip phenomena. We show that a spectrum of slow-slip behaviours arises near the threshold between stable and unstable failure, and is governed by frictional dynamics via the interplay of fault frictional properties, effective normal stress and the elastic stiffness of the surrounding material. This generalizable frictional mechanism may act in concert with other hypothesized processes that damp dynamic ruptures, and is consistent with the broad range of geologic environments where slow earthquakes are observed

    Wetting of cholesteric liquid crystals

    Full text link
    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal
    • …
    corecore