3 research outputs found

    Characterization of the complete plastid genome of of Veronica eriogyne H. Winkl., a Tibetan medicinal herb

    No full text
    Veronica eriogyne H. Winkl.(Plantaginaceae) is a perennial herb with high medicinal value. To better understand the molecular genetics and evolutionary of V. eriogyne, its complete plastid genome was sequenced and annotated. The assembled chloroplast genome is a circular 151,083 bp sequence, consisting of a 82,302 bp large single copy region (LSC) and a 17,449 bp small single copy region (SSC), which were flanked by a pair of 25,666 bp inverted repeats (IRs). The GC content of the chloroplast genome is 38.03%. Moreover, a total of 134 functional genes were annotated, including 88 protein-coding, 38 tRNA, and 8 rRNA genes. Phylogenetic analysis showed that V. eriogyne has close relationship with V. persica Poi. The current study provides important information for further genetic studies on Plantaginacea

    Chloroplast genome of Corydalis impatiens (Pall.) Fisch. ex DC. (Papaveraceae), a Tibetan medical herb

    No full text
    Corydalis impatiens (Pall.) Fisch. 1821. (Papaveraceae) is a Tibetan medical herb used to reduce pain, treat skin injuries, cure hepatitis, and benefit the circulatory system. In the current study, the chloroplast genome of C. impatiens was sequenced. This complete genome is a circular 197,317 bp sequence consisting of a small single-copy (SSC, 3105 bp) region, a large single-copy (LSC, 89,790 bp) region, and a pair of inverted repeats (IRs, 52,211 bp). This chloroplast genome encodes a total of 127 functional genes, including 81 protein-coding, 38 transfer RNA, and eight ribosomal RNA genes. Furthermore, this chloroplast genome contains six pseudogenes, including a pair of ndhB a pair of ndhD, one ndhC, and one ndhK. The phylogenetic relationship within the genus Corydalis was inferred with the maximum-likelihood method, and the result showed that C. impatiens was most closely related to C. conspersa

    A Bioinspired Ag Nanoparticle/PPy Nanobowl/TiO<sub>2</sub> Micropyramid SERS Substrate

    No full text
    In this paper, the micropyramid structure was transferred to the TiO2 substrate by soft imprinting. Then, the PPy nanobowls were assembled onto the surface of the TiO2 micropyramids through the induction of the PS template. Finally, a layer of Ag nanoparticles was deposited on the surface of PPy nanobowls to form a novel Ag nanoparticle/PPy nanobowl/TiO2 micropyramid SERS substrate. Its structure is similar to the bioinspired compound eyes. This substrate exhibited excellent antireflection, ultra-sensitivity, excellent uniformity, and recyclability. The concentration of R6G molecules can be detected as low as 10−9 mol/L, and the Raman enhancement factor can reach 3.4 × 105. In addition, the excellent catalytic degradation performance of the substrate ensures recyclability. This work proves that the micropyramid structure can be applied to other SERS materials besides silicon by the above methods, which broadens the selection range of composite SERS materials
    corecore