290 research outputs found
Linear fuzzy gene network models obtained from microarray data by exhaustive search
BACKGROUND: Recent technological advances in high-throughput data collection allow for experimental study of increasingly complex systems on the scale of the whole cellular genome and proteome. Gene network models are needed to interpret the resulting large and complex data sets. Rationally designed perturbations (e.g., gene knock-outs) can be used to iteratively refine hypothetical models, suggesting an approach for high-throughput biological system analysis. We introduce an approach to gene network modeling based on a scalable linear variant of fuzzy logic: a framework with greater resolution than Boolean logic models, but which, while still semi-quantitative, does not require the precise parameter measurement needed for chemical kinetics-based modeling. RESULTS: We demonstrated our approach with exhaustive search for fuzzy gene interaction models that best fit transcription measurements by microarray of twelve selected genes regulating the yeast cell cycle. Applying an efficient, universally applicable data normalization and fuzzification scheme, the search converged to a small number of models that individually predict experimental data within an error tolerance. Because only gene transcription levels are used to develop the models, they include both direct and indirect regulation of genes. CONCLUSION: Biological relationships in the best-fitting fuzzy gene network models successfully recover direct and indirect interactions predicted from previous knowledge to result in transcriptional correlation. Fuzzy models fit on one yeast cell cycle data set robustly predict another experimental data set for the same system. Linear fuzzy gene networks and exhaustive rule search are the first steps towards a framework for an integrated modeling and experiment approach to high-throughput "reverse engineering" of complex biological systems
Vertex-corrected tunneling inversion in superconductors: Pb
The McMillan-Rowell tunneling inversion program, which extracts the
electron-phonon spectral function and the Coulomb
pseudopotential from experimental tunneling data, is generalized to
include the lowest-order vertex correction. We neglect the momentum dependence
of the electron-phonon matrix elements, which is equivalent to using a local
approximation. The perturbation theory is performed on the imaginary axis and
then an exact analytic continuation is employed to produce the density of
states on the real axis. Comparison is made with the experimental data for Pb.Comment: 14 pages, typeset in ReVTeX, including three encapsulated postscript
figure
Density-functional-based predictions of Raman and IR spectra for small Si clusters
We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems
The Effective Particle-Hole Interaction and the Optical Response of Simple Metal Clusters
Following Sham and Rice [L. J. Sham, T. M. Rice, Phys. Rev. 144 (1966) 708]
the correlated motion of particle-hole pairs is studied, starting from the
general two-particle Greens function. In this way we derive a matrix equation
for eigenvalues and wave functions, respectively, of the general type of
collective excitation of a N-particle system. The interplay between excitons
and plasmons is fully described by this new set of equations. As a by-product
we obtain - at least a-posteriori - a justification for the use of the TDLDA
for simple-metal clusters.Comment: RevTeX, 15 pages, 5 figures in uufiles format, 1 figure avaible from
[email protected]
Electronic interactions in fullerene spheres
The electron-phonon and Coulomb interactions inC, and larger fullerene
spheres are analyzed. The coupling between electrons and intramolecular
vibrations give corrections meV to the electronic energies for
C, and scales as in larger molecules. The energies associated
with electrostatic interactions are of order eV, in C and
scale as . Charged fullerenes show enhanced electron-phonon coupling,
meV, which scales as . Finally, it is argued that non only
C, but also C are highly polarizable molecules. The
polarizabilities scale as and , respectively. The role of this large
polarizability in mediating intermolecular interactions is also discussed.Comment: 12 pages. No figure
Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory
On the basis of a new ab initio, all-electron response scheme, formulated
within time-dependent density-functional theory, we solve the puzzle posed by
the anomalous dispersion of the plasmon linewidth in K. The key damping
mechanism is shown to be decay into particle-hole pairs involving empty states
of d-symmetry. While the effect of many-particle correlations is small, the
correlations built into the "final-state" -d-bands play an important, and
novel, role ---which is related to the phase-space complexity associated with
these flat bands. Our case study of plasmon lifetime in K illustrates the
importance of ab initio paradigms for the study of excitations in
correlated-electron systems.Comment: 12 pages, 4 figures, for html browsing see http://web.utk.edu/~weik
Stone-Wales Transformation Paths in Fullerene C60
The mechanisms of formation of a metastable defect isomer of fullerene C60
due to the Stone-Wales transformation are theoretically studied. It is
demonstrated that the paths of the "dynamic" Stone-Wales transformation at a
high sufficient for overcoming potential barriers) temperature can differ from
the two "adiabatic" transformation paths discussed in the literature. This
behavior is due to the presence of a great near-flat segment of the
potential-energy surface in the neighborhood of metastable states. Besides, the
sequence of rupture and formation of interatomic bonds is other than that in
the case of the adiabatictransformation.Comment: 10 pages, 6 figure
How to Identify Disadvantage: Taking the Envy Test Seriously
In this paper, I am concerned with the comparative disadvantage an individual suffers in having less valuable opportunities than another individual. The dominant approach with respect to this topic proceeds by identifying a metric by which to determine whether an individual?s opportunities are less valuable than another?s. Let?s call this the Metric Test. However, there is another way in which to proceed. Rather than appealing to a metric by which to determine disadvantage, we could instead allow an individual to determine for herself whether or not she is disadvantaged. On the version of this view that I shall defend, we should treat an individual as disadvantaged if and only if that individual envies another?s opportunities. Let?s call this the Envy Test. My overall aim is to illuminate the appeal of the Envy Test and, in particular, to explain its superiority over the Metric Test
MRI scans significantly change target coverage decisions in radical radiotherapy for prostate cancer
INTRODUCTION: Conventional clinical staging for prostate cancer has many limitations. This study evaluates the impact of adding MRI scans to conventional clinical staging for guiding decisions about radiotherapy target coverage. METHODS: This was a retrospective review of 115 patients who were treated between February 2002 and September 2005 with radical radiotherapy for prostate cancer. All patients had MRI scans approximately 2 weeks before the initiation of radiotherapy. The T stage was assessed by both conventional clinical methods (cT-staging) as well as by MRI (mT-staging). The radiotherapy target volumes were determined first based on cT-staging and then taking the additional mT staging into account. The number of times extracapsular extension or seminal vesicle invasion was incorporated into target volumes was quantified based on both cT-staging and the additional mT-staging. RESULTS: Extracapsular extension was incorporated into target volumes significantly more often with the addition of mT-staging (46 patients (40%) ) compared with cT-staging alone (37 patients (32%) ) (P = 0.002). Seminal vesicle invasion was incorporated into target volumes significantly more often with the addition of mT-staging (21 patients (18%) ) compared with cT-staging alone (three patients (3%) ) (P < 0.001). A total of 23 patients (20%) had changes to their target coverage based on the mT-staging. CONCLUSIONS: MRI scans can significantly change decisions about target coverage in radical radiotherapy for prostate cancer.Joe H. Chang, Daryl Lim Joon, Brandon T. Nguyen, Chee-Yan Hiew, Stephen Esler, David Angus, Michael Chao, Morikatsu Wada, George Quong, and Vincent Kho
Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps
Density-functional calculations of the phonon spectrum and electron-phonon
coupling in MgB are presented. The phonons, which involve in-plane
B displacements, couple strongly to the electronic bands. The
isotropic electron-phonon coupling constant is calculated to be about 0.8.
Allowing for different order parameters in different bands, the superconducting
in the clean limit is calculated to be significantly larger. The
phonons are strongly anharmonic, and the non-linear contribution to
the coupling between the modes and the p bands is significant.Comment: 4 pages, 3 figure
- …