55 research outputs found

    Vortex dynamics of a d+isd+is-wave superconductor

    Get PDF
    The vortex dynamics of a d+is-wave superconductor is studied numerically by simulating the time-dependent Ginzburg-Landau equations. The critical fields, the free flux flow, and the flux flow in the presence of twin-boundaries are discussed. The relaxation rate of the order parameter turns out to play an important role in the flux flow. We also address briefly the intrinsic Hall effect in d- and d+is-wave superconductors.Comment: 5 pages, 5 figure

    Vortex physics of unconventional superconductors: Ginzburg-Lindau theory

    No full text
    published_or_final_versionPhysicsDoctoralDoctor of Philosoph

    Impact of Vehicle Head Geometric Features in the Propagation Loss of ETC System

    No full text

    Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries

    No full text
    © 2018 The Royal Society of Chemistry. Ultra-stretchable carbon nanotube (CNT) composite electrodes for lithium-ion batteries are fabricated by coating CNT films and active material powders on biaxially pre-strained polydimethylsiloxane (PDMS) substrates. The wrinkled structures that form during the pre-straining and release process extend along the strain axis to protect the CNT composite structures from fracture. The CNT composites demonstrate excellent stability and high durability with resistance increase of less than 12% after 2000 cycles at 150% strain. Both CNT/Li4Ti5O12 (LTO) anodes and CNT/Li(Ni1/3Co1/3Mn1/3)O2 (NCM) cathodes maintain excellent electrochemical properties at cyclic 150% strain in different axes. The full lithium-ion battery consisting of the stretchable CNT/LTO anode and CNT/NCM cathode is able to withstand 150% strain in different axes without large decreases in performance. Stretchable batteries fabricated by the scalable, highly efficient, and low-cost biaxial pre-strain process with excellent durability and electrochemical properties will have potential applications in flexible devices

    Pronounced Photovoltaic Response from Multi-layered MoTe2 Phototransistor with Asymmetric Contact Form

    No full text
    Abstract In this study, we fabricate air-stable p-type multi-layered MoTe2 phototransistor using Au as electrodes, which shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially resolved photoresponse using scanning photocurrent microscopy, we found that the potential steps are formed in the vicinity of the electrodes/MoTe2 interface due to the doping of the MoTe2 by the metal contacts. The potential step dominates the separation of photoexcited electron-hole pairs in short-circuit condition or with small V sd biased. Based on these findings, we infer that the asymmetric contact cross-section between MoTe2-source and MoTe2-drain electrodes is the reason to form non-zero net current and photovoltaic response. Furthermore, MoTe2 phototransistor shows a faster response in short-circuit condition than that with higher biased V sd within sub-millisecond, and its spectral range can be extended to the infrared end of 1550 nm

    Establishment of A Patient-derived Xenotransplantation Animal Model for Small Cell Lung Cancer and Drug Resistance Model

    No full text
    Background and objective Small cell lung cancer (SCLC) is characterized by poor differentiation, high malignancy and rapid growth fast, short double time, early and extensive metastatic malignancy. In clinical, chemotherapy is the main treatment method, while resistance to multiple chemotherapy drugs in six to nine months has been a major clinical challenge in SCLC treatment. Therefore, It has important clinical value to building SCLC aninimal model which is similar to patients with SCLC. Animal model of xenotransplantation (PDX) from the patients with small cell lung cancer can well retain the characteristics of primary tumor and is an ideal preclinical animal model. The study is aimed to establish SCLC PDX animal model and induce the chemoresistance model to help to study the mechanism of chemoresistance and individual treatment. Methods Fresh surgical excision or puncture specimens from SCLC patients were transplanted into B-NSGTM mice subcutaneous tissues with severe immunodeficiency in one hour after operation the B-NSGTM mice subcutaneous in 1 hour, and inject chemotherapy drugs intraperitoneally after its tumor growed to 400 mm3 with EP which is cisplatin 8 mg/kg eight days and etoposide 5 mg/kg every two days until 8 cycles. Measure the tumor volum and mice weights regularly, then re-engrafted the largest tumor and continue chemotherapy. Results Nine cases were conducted for B-NSG mice modeling. Three of nine cases could be engrafted to new B-NSG mice at least two generation. The SCLC PDX animal models have been established successfully. After adopting chemotherapy drugs, the chemoresistance PDX models have been established. High homogeneity was found between xenograft tumor and patient’s tumor in histopathology, immunohistochemical phenotype (Syn, CD56, Ki67). Conclusion The SCLC PDX animal model and the chemoresistance PDX animal model have been successfully constructed, the success rate is 33%, which provides a platform for the clinical research, seeking for biological markers and choosing individual treatment methods of SCLC

    KCNQ1OT1 lncRNA affects the proliferation, apoptosis, and chemoresistance of small cell lung cancer cells via the JAK2/STAT3 axis

    No full text
    Background: Small cell lung cancer (SCLC) is a devastating and aggressive neuroendocrine carcinoma characterized by high cellular proliferation and early metastatic spread. Numerous studies have demonstrated that long noncoding RNAs (lncRNAs) can regulate tumor generation and development, including in SCLC. The current study aimed to assess the effect of the lncRNA, KCNQ1OT1, on the proliferation, apoptosis, and chemoresistance of SCLC and the potential underlying molecular mechanism. Methods: Matched chemo-resistant and sensitive cells were applied to RNA isolation and followed by expression profiling by microarray analysis and subsequent quantitative polymerase chain reaction (qPCR) validation. Cell viability and apoptosis were determined by Cell Counting Kit-8 and flow cytometry to examine the chemoresistance and apoptosis of KCNQ1OT1 knockdown with lentivirus-mediated RNA interference. Furthermore, cell proliferation was studied by colony formation, and invasion and migration were tested by Transwell cell invasion and wound-healing assays, respectively. A tumor xenograft model was established to determine the role of KCNQ1OT1 in tumor growth and chemoresistance in response to KCNQ1OT1 knockdown in vivo. Western blot analysis, qPCR, and immunohistochemistry were used to detect the levels of messenger RNA (mRNA) Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway-related markers. Results: Higher expression of KCNQ1OT1 was detected in SCLC chemo-resistant verso chemo-sensitive cells. Knockdown of KCNQ1OT1 inhibited SCLC cell viability and cloning ability, hindered cell migration and invasion, induced apoptosis in vitro, and suppressed tumor growth and chemoresistance in vivo, by activating the JAK2/STAT3 signaling pathway. Conclusions: This is the first study to indicate that lncRNA KCNQ1OT1 promotes cell proliferation and invasion, and prevents apoptosis of SCLC by activating the JAK2/STAT3 pathway
    • …
    corecore