2 research outputs found

    Genetic improvement of duration of fertility in chickens and its commercial application for extending insemination intervals

    No full text
    ABSTRACT: The growth rate of chickens has made remarkable progress in recent decades through continuous breeding efforts. However, this advancement has also led to a decline in fertility among commercially bred chickens. Therefore, it is crucial to understand and improve factors that influence fertility to ensure the continued success of the industry. Here, we conduct a 3-generation selection experiment within 2 purebred female lines, with the aim of increasing the duration of fertility (DF). Duration of fertility refers to the length of time hens remain capable of producing fertilized eggs and is a crucial factor that directly impacts chick output. The results showed that significant genetic progress was achieved in embryo survival rates and the fertility duration day during both the peak and late laying periods. Moreover, after 3 generations of selective breeding, the disparities in embryo survival and chick health rates from setting eggs between 8-d and 5-d insemination intervals in the grandparent stock were significantly reduced. The rates decreased from 1.83% and 2.39 to 0.72% and 0.33%, respectively. Surprisingly, the hatching performances of hens with an 8-d interval were comparable to those hens that had not undergone genetic selection for DF and had a 5-d interval. We further discussed the possibility of extending the insemination interval to 8 d in parent stock for commercial practices. The parental populations exhibited remarkable performance in terms of percentages of embryo survival and healthy chicks from the setting eggs, with rates exceeding 94 and 90%, respectively. Thus, it can be inferred that an extended insemination interval is feasible by genetic selection for DF. These findings will provide valuable insights into the efficacy of genetic selection in enhancing DF and its practical application in commercial breeding programs

    Emerging perspectives in the gut–muscle axis: The gut microbiota and its metabolites as important modulators of meat quality

    No full text
    Abstract Animal breeding has made great genetic progress in increasing carcass weight and meat yield in recent decades. However, these improvements have come at the expense of meat quality. As the demand for meat quantity continues to rise, the meat industry faces the great challenge of maintaining and even increasing product quality. Recent research, including traditional statistical analyses and gut microbiota regulation research, has demonstrated that the gut microbiome exerts a considerable effect on meat quality, which has become increasingly intriguing in farm animals. Microbial metabolites play crucial roles as substrates or signalling factors to distant organs, influencing meat quality either beneficially or detrimentally. Interventions targeting the gut microbiota exhibit excellent potential as natural ways to foster the conversion of myofibres and promote intramuscular fat deposition. Here, we highlight the emerging roles of the gut microbiota in various dimensions of meat quality. We focus particularly on the effects of the gut microbiota and gut‐derived molecules on muscle fibre metabolism and intramuscular fat deposition and attempt to summarize the potential underlying mechanisms
    corecore