37 research outputs found

    1A6/DRIM, a Novel t-UTP, Activates RNA Polymerase I Transcription and Promotes Cell Proliferation

    Get PDF
    BACKGROUND: Ribosome biogenesis is required for protein synthesis and cell proliferation. Ribosome subunits are assembled in the nucleolus following transcription of a 47S ribosome RNA precursor by RNA polymerase I and rRNA processing to produce mature 18S, 28S and 5.8S rRNAs. The 18S rRNA is incorporated into the ribosomal small subunit, whereas the 28S and 5.8S rRNAs are incorporated into the ribosomal large subunit. Pol I transcription and rRNA processing are coordinated processes and this coordination has been demonstrated to be mediated by a subset of U3 proteins known as t-UTPs. Up to date, five t-UTPs have been identified in humans but the mechanism(s) that function in the t-UTP(s) activation of Pol I remain unknown. In this study we have identified 1A6/DRIM, which was identified as UTP20 in our previous study, as a t-UTP. In the present study, we investigated the function and mechanism of 1A6/DRIM in Pol I transcription. METHODOLOGY/PRINCIPAL FINDINGS: Knockdown of 1A6/DRIM by siRNA resulted in a decreased 47S pre-rRNA level as determined by Northern blotting. Ectopic expression of 1A6/DRIM activated and knockdown of 1A6/DRIM inhibited the human rDNA promoter as evaluated with luciferase reporter. Chromatin immunoprecipitation (ChIP) experiments showed that 1A6/DRIM bound UBF and the rDNA promoter. Re-ChIP assay showed that 1A6/DRIM interacts with UBF at the rDNA promoter. Immunoprecipitation confirmed the interaction between 1A6/DRIM and the nucleolar acetyl-transferase hALP. It is of note that knockdown of 1A6/DRIM dramatically inhibited UBF acetylation. A finding of significance was that 1A6/DRIM depletion, as a kind of nucleolar stress, caused an increase in p53 level and inhibited cell proliferation by arresting cells at G1. CONCLUSIONS: We identify 1A6/DRIM as a novel t-UTP. Our results suggest that 1A6/DRIM activates Pol I transcription most likely by associating with both hALP and UBF and thereby affecting the acetylation of UBF

    Synthesis and Properties of Hyperbranched Polyferrocenylenesilynes

    No full text
    Organometallic polymers consisting of three-dimensionally alternating ferrocene and silyne units are synthesized in high yields by a one-pot procedure of coupling reactions. The hyperbranched polymers are electronically conjugated, with their absorption spectra extending into the infrared region. The polymers ceramize when pyrolyzed, with higher temperatures favoring the formation of ceramics with larger metallic nanoclusters. The ceramics containing iron silicide nanocrystals exhibit outstanding soft ferromagnetisms with excellent magnetic susceptibilities and practically nil hysteresis losses

    Multi-parameter e-skin based on biomimetic mechanoreceptors and stress field sensing

    No full text
    Abstract Tactile sensing has been a key challenge in robotic haptics. Inspired by how human skin sense the stress field with layered structure and distributed mechanoreceptors, we herein propose a design for modular multi-parameter perception electronic skin. With the stress field sensing concept, complex tactile signals can be transformed into field information. By analyzing the stress field, the real-time three-dimensional forces can be resolved with 1.8° polar angle resolution and 3.5° azimuthal angle resolution (achieved up to 71 folds of improvement in spatial resolution), we can also detect the hardness of object in contact with the electronic skin. Moreover, we demonstrate random assembly of the sensing arrays and integration of our electronic skin onto differently curved surfaces do not lead to any measurement variation of the stress field. This result reveals that the sensing elements in our electronic skin system can be modularly made and exchanged for specific applications

    7-Hydroxyflavone Alleviates Myocardial Ischemia/Reperfusion Injury in Rats by Regulating Inflammation

    No full text
    Inflammation is the primary pathological process of myocardial ischemia/reperfusion injury (MI/RI). 7-Hydroxyflavone (HF), a natural flavonoid with a variety of bioactivities, plays a crucial role in various biological processes. However, its cardioprotective effects and the underlying mechanisms of MI/RI have not been investigated. This study aimed to explore whether pretreatment with HF could attenuate MI/RI-induced inflammation in rats and investigate its potential mechanisms. The results showed that pretreatment with HF could significantly improve the anatomic data and electrocardiograph parameters, reduce the myocardial infarct size, decrease markers of myocardial injury (aspartate transaminase, creatine kinase, lactate dehydrogenase, and cardiac troponin I), inhibit inflammatory cytokines (IL-1β, IL-6, and TNF-α), suppress oxidative stress, and recover the architecture of the cardiomyocytes. The cardioprotective effect of HF was connected with the regulation of the MAPK/NF-κB signaling pathway. What is more, molecular docking was carried out to prove that HF could be stably combined with p38, ERK1/2, JNK, and NF-κB. In summary, this is a novel study demonstrating the cardioprotective effects of HF against MI/RI in vivo. Consequently, these results demonstrate that HF can be considered a promising potential therapy for MI/RI
    corecore