97 research outputs found

    Sequencing of idiopathic pulmonary fibrosis-related genes reveals independent single gene associations

    Get PDF
    BACKGROUND: Previous studies investigating a genetic basis for idiopathic pulmonary fibrosis (IPF) have focused on resequencing single genes in IPF kindreds or cohorts to determine the genetic contributions to IPF. None has investigated interactions among the candidate genes. OBJECTIVE: To compare the frequencies and interactions of mutations in six IPF-associated genes in a cohort of 132 individuals with IPF with those of a disease-control cohort of 192 individuals with chronic obstructive pulmonary disease (COPD) and the population represented in the Exome Variant Server. METHODS: We resequenced the genes encoding surfactant proteins A2 (SFTPA2), and C (SFTPC), the ATP binding cassette member A3 (ABCA3), telomerase (TERT), thyroid transcription factor (NKX2-1) and mucin 5B (MUC5B) and compared the collapsed frequencies of rare (minor allele frequency <1%), computationally predicted deleterious variants in each cohort. We also genotyped a common MUC5B promoter variant that is over-represented in individuals with IPF. RESULTS: We found 15 mutations in 14 individuals (11%) in the IPF cohort: (SFTPA2 (n=1), SFTPC (n=5), ABCA3 (n=4) and TERT (n=5)). No individual with IPF had two different mutations, but one individual with IPF was homozygous for p.E292V, the most common ABCA3 disease-causing variant. We did not detect an interaction between any of the mutations and the MUC5B promoter variant. CONCLUSIONS: Rare mutations in SFTPA2, SFTPC and TERT are collectively over-represented in individuals with IPF. Genetic analysis and counselling should be considered as part of the IPF evaluation

    Burden of disease variants in participants of the Long Life Family Study

    Get PDF
    Case control studies of nonagenarians and centenarians provide evidence that long-lived individuals do not differ in the rate of disease associated variants compared to population controls. These results suggest that an enrichment of novel protective variants, rather than a lack of disease associated variants, determine the genetic predisposition to exceptionally long lives. Using data from the Long Life Family Study (LLFS), we sought to replicate these findings and extend them to include a larger number of disease-specific risk alleles. To accomplish this goal, we built a genetic risk score for each of four age-related disease groups: Alzheimer's disease, cardiovascular disease and stroke, type 2 diabetes, and various cancers and compared the distribution of these scores between older participants of the LLFS, their offspring and their spouses. The analyses showed no significant differences in distribution of the genetic risk scores for cardiovascular disease and stroke, type 2 diabetes, or cancer between the groups, while participants of the LLFS appeared to carry an average 1% fewer risk alleles for Alzheimer's disease compared to spousal controls and, while the difference may not be clinically relevant, it was statistically significant. However, the statistical significance between familial longevity and the Alzheimer's disease genetic risk score was lost when a more stringent linkage disequilibrium threshold was imposed to select independent genetic variants

    Distance-based phenotypic association analysis of DNA sequence data

    Get PDF
    As the cost of sequencing decreases, the demand for association tests that use exhaustive DNA sequence information increases. One such association test is multivariate distance matrix regression (MDMR). We explore some of the features of MDMR using Genetic Analysis Workshop 17 simulated data in search of potential improvements in distance measures. We used genotype data from 697 unrelated individuals, in 200 replications, to test the power of MDMR to detect 13 trait Q2 causative genes based on the Euclidean distance metric. We also estimated the false-positive rate of MDMR using 508 control genes. In addition, we compared MDMR with Mantelā€™s test and collapsing analysis for rare variants. MDMR performed comparably well even with the Euclidean distance measure

    Admixture mapping of coronary artery calcification in African Americans from the NHLBI family heart study

    Get PDF
    BACKGROUND: Coronary artery calcification (CAC) is an imaging biomarker of coronary atherosclerosis. In European Americans, genome-wide association studies (GWAS) have identified several regions associated with coronary artery disease. However, few large studies have been conducted in African Americans. The largest meta-analysis of CAC in African Americans failed to identify genome-wide significant variants despite being powered to detect effects comparable to effects identified in European Americans. Because CAC is different in prevalence and severity in African Americans and European Americans, admixture mapping is a useful approach to identify loci missed by GWAS. RESULTS: We applied admixture mapping to the African American cohort of the Family Heart Study and identified one genome-wide significant region on chromosome 12 and three potential regions on chromosomes 6, 15, and 19 that are associated with CAC. Follow-up studies using previously reported GWAS meta-analysis data suggest that the regions identified on chromosome 6 and 15 contain variants that are possibly associated with CAC. The associated region on chromosome 6 contains the gene for BMP-6, which is expressed in vascular calcific lesions. CONCLUSIONS: Our results suggest that admixture mapping can be a useful hypothesis-generating tool to identify genomic regions that contribute to complex diseases in genetically admixed populations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-015-0196-x) contains supplementary material, which is available to authorized users

    Vasohibin-1 suppresses colon cancer

    Get PDF
    Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor. However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and colony formation in vitro and tumor growth in vivo. In addition, knockdown of VASH1 in cancer cells promoted cell growth, adhesion and migration in vitro, and enhanced tumorigenesis and metastasis in vivo

    CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome

    Get PDF
    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4(+) and CD8(+) T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4(+) and CD8(+) T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4(+) T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4(+) and CD8(+) T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8(+) T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4(+) T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4(+) and CD8(+) T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches

    VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing

    Get PDF
    Cancer is a disease driven by genetic variation and mutation. Exome sequencing can be utilized for discovering these variants and mutations across hundreds of tumors. Here we present an analysis tool, VarScan 2, for the detection of somatic mutations and copy number alterations (CNAs) in exome data from tumorā€“normal pairs. Unlike most current approaches, our algorithm reads data from both samples simultaneously; a heuristic and statistical algorithm detects sequence variants and classifies them by somatic status (germline, somatic, or LOH); while a comparison of normalized read depth delineates relative copy number changes. We apply these methods to the analysis of exome sequence data from 151 high-grade ovarian tumors characterized as part of the Cancer Genome Atlas (TCGA). We validated some 7790 somatic coding mutations, achieving 93% sensitivity and 85% precision for single nucleotide variant (SNV) detection. Exome-based CNA analysis identified 29 large-scale alterations and 619 focal events per tumor on average. As in our previous analysis of these data, we observed frequent amplification of oncogenes (e.g., CCNE1, MYC) and deletion of tumor suppressors (NF1, PTEN, and CDKN2A). We searched for additional recurrent focal CNAs using the correlation matrix diagonal segmentation (CMDS) algorithm, which identified 424 significant events affecting 582 genes. Taken together, our results demonstrate the robust performance of VarScan 2 for somatic mutation and CNA detection and shed new light on the landscape of genetic alterations in ovarian cancer
    • ā€¦
    corecore