2 research outputs found

    STATIC AND DYNAMIC EXPERIMENTAL VALIDATIONS OF THE LATERAL IMPACT RESILIENT DOUBLE CONCAVE FRICTION PENDULUM (LIR-DCFP) BEARING

    Get PDF
    During high-magnitude earthquakes, large base displacements that exceed the lateral capacity of the isolation level can cause internal impacts jeopardizing the benefits of using seismic isolation. The Lateral Impact Resilient Double Concave Friction Pendulum (LIR-DCFP) bearing has been proposed to mitigate the adverse effects of internal lateral impacts between inner sliders and restraining rims of sliding surfaces. This device has an enhanced inner slider formed by two bodies. These bodies are in contact, generating a plane high-friction interface capable of dissipating additional energy and limiting the magnitude of the impact. A numerical model based on rigid body dynamics has been proposed to represent the dynamic response of structures equipped with LIR-DCFP bearings. The numerical formulation includes important modeling aspects such as lateral impact behavior and large displacements (P-? effects), among other essential phenomena. A prototype of this novel device was constructed to validate its lateral behavior through static experimental tests. As predicted, if the inner slider does not contact the restraining rims of the sliding surfaces, the response of the isolator will be identical to the response of the classical frictional isolators. On the contrary, for larger lateral displacements, the contact between the inner slider and the restraining rims triggers high friction sliding. Finally, experimental tests were conducted to validate the dynamic response of a stiff structure equipped with four LIR-DCFP devices. An accurate prediction of the dynamic response can be obtained by employing the suggested numerical model under the presence or absence of internal lateral impacts

    Control spectra for Quito

    No full text
    The Metropolitan District of Quito is located on or very close to segments of reverse blind faults, Puengasí, Ilumbisí–La Bota, Carcelen–El Inca, Bellavista–Catequilla and Tangahuilla, making it one of the most seismically dangerous cities in the world. The city is divided into five areas: south, south-central, central, north-central and north. For each of the urban areas, elastic response spectra are presented in this paper, which are determined by utilizing some of the new models of the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 program. These spectra are calculated considering the maximum magnitude that could be generated by the rupture of each fault segment, and taking into account the soil type that exists at different points of the city according to the Norma Ecuatoriana de la Construcción (2015). Subsequently, the recurrence period of earthquakes of high magnitude in each fault segment is determined from the physical parameters of the fault segments (size of the fault plane and slip rate) and the pattern of recurrence of type Gutenberg–Richter earthquakes with double truncation magnitude (Mmin and Mmax) is used
    corecore