5 research outputs found

    Defect formation on surfaces bombarded by energetic multiply charged proteins: Implications for the conformation of gas-phase electrosprayed ions

    Get PDF
    Indirect information on the conformation of highly charged molecular ions may be obtained by monitoring their collisional cross sections and the course of simple gas-phase reactions such as hydrogen-deuterium exchange. In this work, another indirect but more visually oriented approach is explored: electrosprayed protein ions are accelerated toward a highly oriented pyrolytic graphite surface and the resulting single-ion defects are imaged by scanning force and tunneling microscopy. All protein impacts generated shallow hillocks: the shapes depended on the identity and charge state of the incident protein. Lysozyme and myoglobin, both compact, globular proteins in the native state, produced compact, almost circular hillocks. However, hillocks generated by myoglobin that had been denatured in the solution phase were elongated, and the elongation was positively correlated with the charge state of the ion. It appears that structural information about gas-phase multiply charged proteins can be derived from imprints generated by energetic protein impacts on surfaces

    Human Connexins in Skin Development and Skin Disorders

    No full text
    corecore